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Abstract
Bipolar disorders are debilitating psychiatric illnesses affecting up to 2.4% of the pop-

ulation, and are one of the leading causes of disabilities worldwide, with up to 19% of

patients completing suicide if left untreated. Despite this, current efforts to understand

and treat bipolar disorders are still poor, with around 60% of patients relapsing even

after proper treatment. New efforts to understand psychiatric illnesses are now being

conducted in the growing field of computational psychiatry. Yet even in this field,

bipolar disorders are an understudied illness. This study aims to build on the small but

significant work being conducted on understanding bipolar disorders through compu-

tational modelling techniques. Circular inference is a Bayesian inference model that

assumes prior beliefs, and likelihoods, in the form of sensory information, are rever-

berated in a hierarchical inference paradigm. That is, prior beliefs can be confused

and added with likelihoods, whilst likelihoods can be confused and added with priors.

This model has successfully been applied to schizophrenia, with results showing im-

paired circular inferences in schizophrenia compared to healthy controls. Given the

genetic and symptomatic overlaps between schizophrenia and bipolar disorders, there

is promise in applying this model to bipolar disorders. This study has therefore in-

vestigated the potential application of circular inference to bipolar disorders. A model

recovery technique was first conducted to test whether the circular inference model

could accurately be recovered for the experiment used. Results from this suggests that

the circular inference model could not be recovered with any significant accuracy, be-

ing recovered in only 10% of the simulations. However, if the other two models used

in this study, namely simple Bayes and weighted Bayes, were used to simulate the

data, the circular inference model was never the best fitting model. This suggests that

if the circular inference model is the winning model, there is a strong chance that the

data is best fit by circular inference rather than the other models. A probabilistic de-

cision task was designed, based on previous work, that aims to capture the behaviour

of individuals in how they infer decisions given limited prior and sensory information.

The behavioural data was fit using the three models. Of the 7 data sets obtained from

the experiment, two participants were best fit by circular inference. Of these two par-

ticipants, one scored the highest for the personality trait cyclothemia, a trait closely

related to bipolar disorders. Whilst these results do not prove statistically significant,

this study has provided a useful framework with which to explore further the potential

of circular inference in bipolar disorders, potentially with redesigns of both the model

and the experiment.
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Chapter 1

Background

This chapter will provide a brief overview of the nosology of bipolar disorder (BD),

including its symptoms, current treatments, purported causes, and symptomatic and

genetic overlap with other psychiatric disorders. A short background on the methods

used in the newly emerging field of Computational Psychiatry (CP), and how CP aims

to help solve some of the current problems faced in the field of psychiatry, is then

provided. The methods applied in this dissertation are common approaches used in

CP, and it is the potential gains that CP may provide to the general study of psychiatry,

and in this case BD in particular, that provides the motivation for the work conducted

in this dissertation.

1.1 Bipolar Disorder

Bipolar disorder is a psychiatric illness broadly described as significant and debilitating

changes in mood, such that mood alternates between (hypo)manic states and depressive

states, interspersed with euthymic states. It was French psychiatrist Jean-Pierre Falret

who is noted to be the first to observe and categorise BD in the 1850s, which he named

la folie circulaire, or circular insanity (Angst and Sellaro, 2000). The Diagnostic and

Statistical Manual of Mental Disorders, fifth edition (DSM-5, American Psychiatric

Association, 2013), which is the most widely used manual in the United States for

classifying mental disorders, now categorises BD into a total of seven subcategories,

although the three predominant subcategories are bipolar I disorder, bipolar II disorder,

and cyclothymic disorder.

Based on the World Mental Health Survey Initiative, BD has a lifetime and 12-

month prevalence rate of 2.4% and 1.5% respectively (Merikangas et al., 2011), and is

1



Chapter 1. Background 2

the 17th leading cause of disability in the global burden of diseases (Vigo et al., 2016).

Left untreated, it is a lethal disease, with up to 60% of sufferers attempting suicide at

least once, and up to 19% of sufferers completing suicide (Novick et al., 2010). The

total annual cost of BD to the UK, which includes NHS resource use, non-health-care

resource use and indirect costs, was $2 billion in 1999/2000 (Gupta and Guest, 2002),

or the equivalent of approximately $3.4 billion in 2020 (average inflation at 2.8% per

year, ONS, 2021). An estimated 300,000 people in the UK are affected with BD (Gupta

and Guest, 2002).

1.1.1 Symptoms of Bipolar Disorder

According to the DSM-5, bipolar I disorder is diagnosed if a patient has at least one

lifetime manic episode. Although patients diagnosed with bipolar I disorder often

experience hypomanic (a less severe manic episode) and major depressive episodes,

these are not necessary for a diagnosis of bipolar I disorder. A manic episode is

characterised by an abnormal and persistent period of elevated, expansive, or irrita-

ble mood and increased goal-directed activity, which lasts for at least 1 week and is

present nearly every day, for most of the day. The mood disturbance is so severe that

it has detrimental outcomes on the person’s social or occupational functions, and may

necessitate hospitalisation to prevent harm to the self or others. It may also include

psychotic features. During this period the patient also exhibits behaviours that differ

significantly from their usual behaviour. These include behaviours such as: having an

inflated self-esteem or grandiosity; a decreased need for sleep, and therefore feeling

rested after very little or no sleep at all; increased talkativeness that can be intrusive,

including with strangers; an experience of racing thoughts or flight of ideas; increased

distractibility, such that attention is constantly drawn to irrelevant external stimuli; in-

creased goal-directed activity, such as at work/school, sexually, or socially; and doing

to excess activities that have high potential for negative consequences, such as unre-

strained spending sprees accumulating lots of debt, or sexual indiscretions that pay

little or no regard to relationship consequences or disease transmission.

Bipolar II disorder meanwhile includes experiencing at least one episode of major

depression and one episode of hypomania without ever experiencing full mania. Dur-

ing a state of hypomania, the same behavioural changes as specified in mania above

are present, with the difference being that it often does not significantly impair the

person’s social or occupational functions, or require hospitalisation. Despite this, the
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behavioural changes are often noticeable by others. The hypomanic state may also

have a shorter timeline to that of mania, lasting only 4 or more days, as opposed to 1

week (although hypomania can last for 1 week or more). Individuals with bipolar II

disorder tend to have greater and more chronic periods of depression than those with

bipolar I disorder, and depression often does cause impairments. Depressive symptoms

can also co-occur within a period of hypomania, and likewise hypomanic symptoms

can co-occur during a period of major depression.

A major depressive episode constitutes either a symptom of depressed mood or a

symptom loss of interest/pleasure, which lasts for at least 2 weeks. During depressed

mood, there might be either a subjective feeling of sadness, emptiness, or hopelessness,

or an observation from others that the person appears to be so (for instance tearfulness).

During a loss of interest/pleasure, there is a significant reduction in the interest or

pleasure found from all, or almost all, activities. Either a depressed mood or loss of

interest/pleasure lasts nearly every day, for most of the day. Major depression also

also constitutes a significant change in behaviour occurring within the same 2 week

period that can cause significant detrimental effects in social or occupational functions.

These can include: significant weight loss or gain, and/or a significant increase or

decrease in appetite; insomnia or hypersomnia; an observable psychomotor agitation

or retardation; fatigue or loss of energy; feelings of worthlessness or guilt that can be

delusional; an inability to concentrate or think, or indecisiveness; thoughts of death,

including suicide ideation, or a suicide attempt.

In cyclothymic disorder, symptoms of hypomania and depression can be present

for at least 2 years, but without fulfilling the full criteria for hypomania and depression

(American Psychiatric Association, 2013). The symptoms of hypomania and depres-

sion are also distinct from one another, and hence do not co-occur.

1.1.2 Current Treatments for Bipolar Disorder

The treatments for BD focuses on two predominant types, that of pharmacological in-

tervention through drugs, and a second through psychotherapy. In addition, treatments

can alter depending on which symptoms require alleviating in the short-term (mania

or depression), as well as there being treatments for the long-term maintenance of the

illness (Geddes and Miklowitz, 2013).
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1.1.2.1 Pharmacotherapy for Bipolar Disorder

In treating acute mania, the most common and effective pharmacological treatments

show to be antipsychotic drugs, and in particular risperidone, olanzapine, and haloperi-

dol, which show to be more effective than other antipsychotics (Cipriani et al., 2011).

Whilst these drugs are most effective for short-term treatment of mania, lithium has

been shown to have better long-term evidence of efficacy when continued drug treat-

ment is used (Geddes and Miklowitz, 2013).

Pharmacological treatment of depressive episodes, also known as bipolar depres-

sion, seems to be more challenging than treatment of mania. Evidence suggests that the

use of antidepressants for treating bipolar depression is no more effective than placebo,

and could potentially lead to the induction of mania or mood instability (Sidor and

MacQueen, 2012). Despite this lack of evidence for the effectiveness of antidepres-

sants, estimates suggest that 50-80% of BD patients are nonetheless prescribed antide-

pressants (Sidor and MacQueen, 2012). More effective treatment options for bipolar

depression show promise in atypical, or second generation, antipsychotics, and in par-

ticular quetiapine and olanzapine (De Fruyt et al., 2012). Unfortunately, these drugs

also have unwanted side effects such as somnolence (or sleepiness), sedation, akathisia

(restlessness and inability to remain still), and metabolic issues (such as weight gain).

For long-term maintenance and treatment, lithium appears to remain the best treat-

ment option for BD (Cade, 1949). A meta-analysis of lithium in the long-term treat-

ment of BD showed a reduction in relapse from 61% to 40% following lithium treat-

ment, with greater effectiveness in preventing relapses of mania than of depression, as

well as reducing risk of suicide (Geddes et al., 2004). Unfortunately, long-term lithium

use is restricted by potentially dangerous adverse side-effects, including disruption to

renal function and potential renal failure, risk of congenital malformation in the babies

of mothers who take lithium during pregnancy, and increased risk of hyperparathy-

roidism.

1.1.2.2 Psychotherapy for Bipolar Disorder

Psychotherapy is now considered an important treatment option in conjunction to phar-

macotherapy for treating BD (Geddes and Miklowitz, 2013). This is because of evi-

dence that psychosocial stressors, such as excessive family discord and distress, neg-

ative life events, disrusption of sleep, or accelerated goal attainment, can provoke re-

lapse and worsen symptoms (Geddes and Miklowitz, 2013).
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Unfortunately, it is unlikely that psychotherapy would work sufficiently well in

treating patients during acute manic episodes, due to insufficient insight or rejection

of help (Geddes and Miklowitz, 2013). Psychotherapy can however help during and

following depressive episodes, by reducing recovery time following acute depression,

preventing relapse and improving overall life functioning and satisfaction for patients

(Miklowitz, 2006; Miklowitz et al., 2007).

There are a number of different forms of psychotherapy, with the main ones being

family-focused therapy, cognitive-behavioural therapy, interpersonal and social rhythm

therapy, group psychoeducation, functional remediation and systematic care manage-

ment (Geddes and Miklowitz, 2013). They each work to help address some of the

psychosocial factors that can contribute to relapses and worsening of symptoms. For

instance, family-focused therapy aims to address the frequently shown association be-

tween hostility of caregivers (parents or spouse) and increased risk of relapse, by pro-

viding therapy to both patients and caregivers (Hooley, 2007). Cognitive-behavioural

therapy meanwhile assumes that pessimistic or overly optimistic thinking in response

to life events, as well as dysfunctional beliefs about the self, the world, and the future,

determines relapse into either depression or mania (Geddes and Miklowitz, 2013), and

attempts to address these dysfunctional beliefs and behaviours. Cognitive-behavioural

therapy seems to help prevent depressive episodes significantly more so than manic

episodes (Lam et al., 2005). Generally, psychotherapy is provided alongside pharma-

cotherapy, and meta-analyses suggest that psychotherapy in combination with pharma-

cotherapy is significantly more successful in preventing relapses than pharmacotherapy

alone (Scott et al., 2007).

Despite promising evidence for both pharmacological and psychological treatments

of BD, even with treatment, relapse of mania or depression occurs in about 37% of

patients within 1 year, and in around 60% of patients within 2 years (Geddes and Mik-

lowitz, 2013). New therapy options for both the short-term (and in particular for bipo-

lar depression) and the long-term treatment of BD are therefore desperately needed.

1.1.3 Purported Aetiology of Bipolar Disorder

There are three factors that are purported to be the main causes of BD. These are

genetic factors, biological factors, and psychosocial factors.

The genetic risk factor for BD shows itself in the high rates of heritability, it being

one of the most heritable mental disorders (Goodwin and Jamison, 2007). As such,
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many theories on the aetiology of BD focus on particular genes or groups of genes

(Neves-Pereira et al., 2002). Biological factors meanwhile relate to abnormalities in

brain regions, such as the hypothalamic-pituitary-adrenal axis (Furnham and Anthony,

2010), or in differences in neurotransmitter levels, such as norepinephrine, serotonin

and dopamine (Young et al., 1994). Psychosocial factors suggest that environmental

events, such as stressful life events, childhood trauma, and abuse, could lead to in-

creased risk of BD (Hammen and Gitlin, 1997; Leverich et al., 2002). Furthermore,

sleep deprivation and disruption to circadian rhythms has been shown to induce manic

episodes (Wehr et al., 1987).

The prevailing view is that it is probably the interaction of all these three factors,

the genetic, biological, and psychosocial, that leads to the onset of BD, in what has

been termed the ‘diathesis-stress’ model (Furnham and Anthony, 2010).

1.1.4 Bipolar Disorder in Relation to Other Psychiatric Disorders

Bipolar disorder shares many features, including symptoms, genetic markers, and brain

activity abnormalities, with other psychiatric disorders. In particular, bipolar disorder

has been found to share many features with schizophrenia and major depressive disor-

der. Factor structures of symptoms in schizophrenia shows to present with three pri-

mary factors, or symptom clusters (American Psychiatric Association, 2013). These

are 1) positive symptoms (hallucinations and delusions); 2) negative symptoms (an-

hedonia, asociality, etc.); and 3) disorganisation (disorganised thinking/speech or ab-

normal behaviour). Toomey et al. (1998) showed in a factor analysis that these same

three factors can be extended and applied to major depression and bipolar disorder.

They concluded that there was a continuous measure of psychosis relevant to all three

illnesses, and that the similar symptom factors found across these illnesses were re-

flecting the underlying dimension of psychosis. Furthermore, Reynolds de Sousa et al.

(2021) have explored the hypothesis that BD and schzophrenia lie on a continuum,

and relate findings that show the same or similar neurotransmitter dysfunctions, ge-

netic similarities, and common abnormalities in EEG and imaging patterns between

these two disorders.

Given BD, and particularly BD type II, includes periods of major depression, it

should be clear that it shares symptoms with major depressive disorder. As such, bipo-

lar disorder is often misdiagnosed as recurrent major depressive disorder. In fact, it

is estimated that potentially up to 21% of patients diagnosed with unipolar depression
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may have undiagnosed bipolar disorder (Smith et al., 2011). Misdiagnoses such as this

point towards the need for improved diagnostic tools, but again it indicates a shared

dimensional element to these illnesses.

BD, in addition to schizophrenia, has also shown to have strong genetic over-

lap with autism spectrum disorder, with all three illnesses sharing common single-

nucleotide polymorphism alleles (Carroll and Owen, 2009). It is not surprising there-

fore that a family history of both schizophrenia and BD increases the risk factors for

autism spectrum disorder, such that first degree relatives of an individual with either

schizophrenia or BD have increased risk of autism (Sullivan et al., 2012).

There is also evidence of comorbidity between bipolar disorder and a range of psy-

chiatric illnesses. In particular, there is a strong association between BD and substance

abuse, but also associations with anxiety disorders, attention-deficit/hyperactivity dis-

order, eating disorders, cylcothymia and axis II personality disorders (Krishnan, 2005).

Given such a wide range of overlapping symptoms, shared genetic variances, and

comorbidities between BD and other psychiatric disorders, these all indicate that a

dimensional approach to diagnosing and understanding mental illness may be more

sensible than the current approach. Indeed, the methods of modelling behaviour that

we have taken as part of this study could be more readily applied to a dimensional

understanding of mental illness, such that a persons ability to perform inference is

used as a marker of illness, as opposed to, or perhaps in combination with, symptoms

only.

1.2 A Computational Approach to Psychiatry

The traditional approach to psychiatry, as outlined above, has been one of symptom

clustering used to classify illnesses, with many of these symptoms being subjective

evaluations from the patient. However, due to the heterogeneous nature of symptoms

within an illness, and the sharing of symptoms across different illnesses, classifications

can often be difficult and even incorrect. One such common occurrence of this is that

bipolar disorder is often misclassified as unipolar depression (Smith et al., 2011). In

addition, the best treatments have tended to come from trial-and-error methods, partic-

ularly pharmacotherapy treatments, which are clearly inefficient methods for effective

drug discovery. Stephan et al. (2016a,b) have laid out a non-exhaustive series of some

of the major challenges faced currently in psychiatry.

Computational approaches to psychiatry now aim to improve upon the current state
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of psychiatry, by using two complementary methods of computation: data-driven and

theory-driven computation (Huys et al., 2016; Series, 2020). Data-driven computa-

tion employs machine learning and high-dimensional data in order to more effectively

classify illnesses, predict treatment outcomes or to guide treatment selection. How-

ever, data-driven methods do not necessarily provide much insight into the underlying

mechanisms of these illnesses. Theory-driven methods meanwhile build mechanistic

models at multiple levels of abstraction. These models instantiate hypotheses of the

underlying mechanisms, and can be tested using behavioural experimental designs.

These two approaches are often complementary. For instance, parameter estimation in

a theory-driven model can be performed using maximum likelihood estimation (as has

been performed in this study, Section 3.6).

Computational methods applied to psychiatry has spawned the new field of Com-

putational Psychiatry (CP), and CP is now attempting to address a large subset of

those major challenges laid out by Stephan et al. (2016a,b). This includes a broad

list of challenges, such as (again, non-exhaustive): the role and problems of using

symptoms in disease diagnosis (the current practice), and the need to integrate a di-

mensional approach to mental illnesses; the higher order structure of the mechanisms

relevant for diagnostics – that is, to understand the cluster of mechanisms that are spe-

cific to patients and that may be shared across subgroups of patients; the development

of computational assays, or generative models that characterise the (aberrant) compu-

tations performed by the brain, for psychiatric nosology; and understanding learning

dysfunctions in relation to psychiatric illnesses.

This study aims to build on the promising methods of CP, and employs a theory-

driven approach to understanding BD, which is a comparatively understudied psychi-

atric disorder in CP.

1.3 Motivation for this Study

BD is a relatively understudied psychiatric disorder in CP (Series, 2020). However,

there are significant overlaps between BD and schizophrenia. There is promise there-

fore in applying some of the same or similar experiments and models that have been

applied to schizophrenia for bipolar disorder. One such promising computational

model that has been successfully applied to schizophrenia is ‘circular inference’ (Jardri

and Denève, 2013; Jardri et al., 2017). In a recent extension of circular inference in

schizophrenia, Simonsen et al. (2021) successfully showed deficits in circular infer-
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ence using an experiment that included social factors that were not included in the

original experiment by Jardri et al. (2017). In this study, we aim to adopt the experi-

ment by Simonsen et al. (2021) and investigate whether it could be applied to bipolar

disorders.

Prior to applying it to patients however, it is first beneficial to assess the general

effectiveness of the modelling approach. This study will use model evaluation tech-

niques in order to assess how reliable the circular inference model is in describing the

behavioural data extracted from the study. In addition, given this experiment is still

very new, this study will evaluate the subjective experience of taking the experiment,

by providing the participants with a set of evaluation questions after having conducted

the experiment. Furthermore, a preliminary analysis on whether mood might be corre-

lated with behaviour in the experimental task is conducted by assessing the participants

using a non-clinical questionnaire known as TEMPS-A. Finally, given this experiment

includes a social factor, and despite it not being the primary objective of this study,

it might also be interesting to investigate whether autistic traits are correlated with

behaviour in the experiment. Hence, a second questionnaire is provided to the partici-

pants, known as the autism spectrum quotient, to assess traits related to autism.

The work presented in this dissertation will therefore assess the quality of both

the model and experiment, as well as exploring any potential correlations between

mood temperaments, autistic traits, and the model parameters fitted to the experimental

data. As the experimental design, model design, and analyses have been conducted

using a small, preliminary set of participants, this work in effect provides a ready-

made framework that can later be more easily applied to larger groups of patients.



Chapter 2

Computational Modelling of Bipolar

Disorder

This Chapter will first review briefly the current approaches to computational mod-

elling of bipolar disorder. It will then move on to describe Bayesian methods of mod-

elling behaviour and psychiatric illnesses, which is an approach not yet seen in mod-

elling approaches to bipolar disorder. Three Bayesian methods are described, each

one building on the previous, and all three being used as part of this study: Simple

Bayes, Weighted Bayes, and Circular Inference. An example of the application of

these Bayesian methods for modelling psychiatric illnesses is provided with regards

to schizophrenia, which has arguably been modelled through this approach more than

any other illness.

2.1 Current Computational Models of Bipolar Disorder

Bipolar disorder remains a poorly understood illness, and is perhaps one of the least

studied major psychiatric disorders in computational psychiatry (Series, 2020). As

such, there is only a limited number of theory-driven computational models available.

Broadly, the literature on theory-driven computational models of BD falls under two

main approaches. The first is non-linear dynamical systems modelling, which was ar-

guably the first attempt at applying mathematical modelling to BD. And it was Daugh-

erty et al. (2009) who were the first to attempt to model BD as a dynamical oscillator.

They made the assumption that mood in BD type II fluctuates periodically and wors-

ens over time if left untreated. A negatively damped harmonic oscillator was therefore

used to model mood as,

10
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m̈−αṁ+ω
2m = 0, (2.1)

where m represents mood and α > 0 and ω are parameters. However, given this system

would go towards infinity, and yet mood, even if left untreated, cannot realistically

become infinitely severe, an additional term can be added to Eqtn 2.1 allowing the

system to come to a stable limit cycle,

m̈−αṁ+ω
2m−βm2ṁ = 0, (2.2)

where β is an additional parameter. This system is also known as the van der Pol

oscillator. Whilst this system can grow over time, representing a worsening of BD

severity, it eventually reaches a stable limit cycle. Autonomous forcing can be included

in order to represent the aggregate effects of treatment of BD (the combined effect of

antidepressants, antipsychotics, mood stabilisers, psychotherapy, etc.), by including an

additional forcing function g(m, ṁ),

m̈−αṁ+ω
2m−βm2ṁ = g(m, ṁ). (2.3)

Daugherty et al. (2009) use the forcing function g(m, ṁ) = γm4ṁ+δm2ṁ in their anal-

ysis. Applying the forcing function when the van der Pol limit cycle is severe reduces

the amplitude of the oscillations to less severe levels. The above model is an example of

the dynamical approach to BD, and further models have extended on this (Steinacher

and Wright, 2013; Goldbeter, 2011; Chang and Chou, 2018). A review conducted

by Cochran et al. (2017) offers a useful comparison of the dynamical modelling ap-

proaches to BD.

The second main body of theoretical modelling of BD comes from Reinforcement

Learning (RL). A recent computational framework described by Mason et al. (2017)

suggests that mood swings are a result of potentially hypersensitivity and hyposen-

sitivity to rewarding stimuli during states of high mood and low mood, respectively.

During a manic cycle for instance, an increased biased perception to rewarding stim-

uli as a result of hypersensitivity leads to increased positive surprises, thus increasing

mood further which increases the biased perception even further still (Figure 2.1). Over

time however, as reality becomes increasingly discrepant with the perceived rewards,

there is an eventual extreme negative surprise. This begins a depressive cycle, which

works in the same manner as the manic cycle but with decreased biased perceptions

and negative surprises. In this case, over time, reality eventually becomes much more
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Figure 2.1: Model of mood instability proposed by Mason et al. (2017). A manic cycle

occurs when perception of rewards are much higher than reality (left cycle). However,

once expectations of rewards become overly high and unrealistic, a large negative sur-

prise is elicited. This begins a depressive cycle in which perception of rewards become

much lower than reality (right cycle). Figure adapted from Mason et al. (2017).

rewarding than the biased perception suggests, which then causes an extreme positive

surprise and hence another manic cycle. Linke et al. (2020) have suggested that it

could be a case of reduced learning rates for negative surprises leads to overly opti-

mistic expectations, hence initiating the bipolar cycle as indicated in Figure 2.1. They

proposed a simplistic RL rule that has two separate learning rates each for positive and

negative rewards,

Qi(t +1) = Qi(t)+α+[r(t)−Qi(t)]++α−[r(t)−Qi(t)]− (2.4)

where Qi(t) is the value for a stimulus i on a trial t, r(t) is a reward received during

trial t, and α+ and α− are the positive and negative learning rates for rewards that are

better or worse than expected, respectively. Linke et al. (2020) tested such a model

on first-degree relative of patients with BD in a binary decision making task. They

hypothesised that an aberrancy in the negative learning rate might also be observed in

first-degree relatives of patients with BD. Their results did not strongly support this

however, and further investigations still need to be performed to test whether this is

even true of BD patients themselves.
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2.2 Introduction to Bayes’ Theorem in Modelling

Behaviour

A large area of computational modelling in CP has now gone into exploring whether

there are aberrancies in inference in patients with various psychiatric disorders, but in

particular in schizophrenia (Garety et al., 1991; Adams et al., 2016). In the Bayesian

inference framework, a belief would arise from an individual’s integration of prior

beliefs with new sensory information. It has been suggested that in schizophrenia,

sensory information is given more weight than prior beliefs (Adams et al., 2016), which

could explain the surprising finding that patients with schizophrenia have a reduced

susceptibility to optical illusions (Notredame et al., 2014).

The experimental setup used to test inference in this study, which has been adapted

from Simonsen et al. (2021), can be used to test the Bayesian inference hypothesis of

behaviour. In the experiment (discussed more fully in Section 3.3), there are a range

of jars each containing different proportions of red and green beads. One of these jars

is chosen at random with the contents of the jar hidden from the participants. 8 beads

are then randomly drawn from the jar, and the participant must guess the colour of the

9th bead before it is drawn. Four simulated agents also draw beads from the same jar

before the participant does the same, and make guesses as to the colour of the next

bead. The participant is shown with the guesses of the four agents. This information

therefore represents the prior belief for the colour of the 9th bead. The 8 randomly

drawn beads then represent the participant’s sensory evidence. Formally, this can be

presented as follows,

P(R|S) = P(S|R)P(R)
P(S)

(2.5)

where P(R|S) is the posterior probability of the next bead being red (R) given the

sensory evidence (S). P(R) is then the prior probability of the next bead being red,

P(S) the marginal likelihood of the sensory evidence, and P(S|R) the likelihood of the

sensory evidence given the next bead will be red. This formulation is known as the

standard, or simple, Bayes model, and is one such example of Bayesian modelling of

behaviour that assumes the participant is ‘Bayes optimal’. For a situation in which

there is a binary choice (such as between a red and green bead in this instance), and

the likelihood and priors for each choice are mutually exclusive and sum to 1, so that

P(S|R) = 1−P(S|G) and P(R) = 1−P(G), then Eqtn 2.5 can be simplified to a log
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odds representation as follows (Jardri et al., 2017; Simonsen et al., 2021),

Lr = Ls +Lo (2.6)

where Lr = log
(

P(R|S)
1−P(R|S)

)
, Ls = log

(
P(S|R)

1−P(S|R)

)
and Lo = log

(
P(R)

1−P(R)

)
. This is the

form used by Jardri et al. (2017) and Simonsen et al. (2021). Once Lr had been found,

it would require only a simple inversion to obtain the posterior,

P(R|S) = eLr

1+ eLr
. (2.7)

2.2.1 Weighted Bayes

In practice it is unlikely that a participant would be Bayes optimal, and may instead

over- or under-count either the sensory evidence or their prior beliefs. To account for

this, there is a further extension on simple Bayes known as weighted Bayes (WB),

which adds weights to the prior and likelihood (Simonsen et al., 2021),

Lr = F(Ls,ws)+F(Lo,wo), (2.8)

where

F(L,w) = log
(

weL +1−w
(1−w)eL +w

)
. (2.9)

The weights for the likelihood and prior, ws and wo respectively, represent how

much ‘trust’ the participant has in either the sensory evidence or the prior. When

ws = wo = 1 then the WB model reduces to the SB model.

2.2.2 Circular Inference

Jardri and Denève (2013) first layed out the circular inference hypothesis in schizophre-

nia. Originally proposed in a neural network framework, their later work (Jardri et al.,

2017) simplified the circular inference model down from the neural network descrip-

tion to being one that is an extension on the WB described above. This latter version

of the CI model is given as follows,

Lr = F(Ls + I,ws)+F(Lo + I,wo) (2.10)

where
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I = F(αsLs,ws)+F(αoLo,wo). (2.11)

As can be seen in Eqtn 2.10, the log odds for each of the prior and likelihood has

an equal term added on to them, I. This additional term, described by Eqtn 2.11,

represents an additional increase in the number of times the likelihood and prior are

included in the computations. This addition is also described as the ‘reverberation’ of

the likelihood and prior, as they appear to be reverberated within the computation of

the posterior log odds (Jardri and Denève, 2013). There are an additional two terms, αs

and αo, that dictate how many times each of the likelihood and prior are reverberated,

respectively. Should αs = αo = 0, then CI reduces down to the WB case.

This forms the basic understanding of the CI model itself. But it is perhaps worth

a closer look at the theory behind this model.

2.2.3 Theory of Circular Inference

Jardri and Denève (2013) first proposed the circular inference model as a mechanism

to explain positive symptoms (such as hallucinations and delusions) in schizophre-

nia. They based it on empirical findings showing impairments in GABA transmission

and/or NMDA receptor plasticity in schizophrenia (Stephan et al., 2009). Impairment

of GABA, an inhibitory neurotransmitter, and NMDA, being a receptor for the excita-

tory neurotransmitter glutamate, would indicate an imbalance in excitation and inhibi-

tion in the brain (O’Donnell, 2011).

The Bayesian inference hypothesis of the brain posits that a basic function of the

brain is to generate percepts via Bayesian inference (Doya et al., 2007). To do so, a

hierarchical Bayesian inference framework would be performed via hierarchical net-

works in the brain (Friston, 2008). These hierarchical networks pass on sensory obser-

vations via a bottom-up path, whilst predictions based on prior beliefs would be passed

through via a top-down path. An optimal combination of bottom-up sensory signals

with top-down predictions would then result in optimal Bayesian inference (Figure

2.2).

However, there is a problematic outcome in having a hierarchical network pass in-

formation both ways through the network – how can sensory information that is passed

on from the bottom-up pathway not be reverberated back down the network and there-

fore be misinterpreted as prior knowledge? And likewise, how does prior knowledge

not get reverberated back up the network and be misinterpreted as sensory informa-
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Figure 2.2: Neural network model of circular inference. A) a hypothetical scenario

of hierarchical and probabilistic causations. Sensory information is received from the

bottom, whilst prior beliefs are located at the top of the hierarchy. B) A neural network

implementation of belief propagation. Messages are sent between the nodes, each of

which represents a belief about the probability of the object at that node being present.

Recurrent inhibitory connections aim to cancel out messages that would otherwise be

reverberated throughout the network. C) An example of a balanced inhibition-excitation

network allowing messages to be propagated only once throughout the network (top)

versus an imbalanced network without appropriate inhibition, such that messages are

passed multiple times throughout the network, resulting in circular belief propagation.

Figure adapted from Jardri and Denève (2013).

tion? In the hierarchical network proposed by Jardri and Denève (2013), they suggest

that inhibitory loops cancel out reverberated signals, thus avoiding these problems. In

such a framework, if inhibition were reduced, or if there was a case of over-excitation

in the network, then these signals would indeed be reverberated, resulting in ‘circular

belief propagation’.

Figure 2.2 gives a toy example for how such a hierarchical network might compute

inferences, as first described by Jardri and Denève (2013). In this hypothetical case,

bottom up sensory evidence, in the way of the colour green for instance, is passed up

the network. Meanwhile, prior beliefs, such as the prior knowledge that one is in a

forest (or not) is passed down the network. A combination of these bottom-up and top-
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down signals then combine to produce inferences at different levels of the hierarchy.

For instance, the presence of the colour green increases the probability of there being

a leaf, which in turn increases the probability of there being a tree. Likewise, the

prior knowledge that one is in a forest increases the probability of seeing a tree, and

therefore also a leaf. Note that there is a causal relationship in the network that travels

down the top-down path, such that the presence of a forest causes the presence of trees,

the presence of trees causes the presence of leaves, and the presence of leaves causes

the colour green (as represented by the downward pointed blue arrows in Figure 2.2A).

Each node in the network therefore represents the probability of the presence of

that object. A neural network implementation of this could be as is shown in Figure

2.2B. Here, messages sent from node i to node j are given as Mi j. Feedforward and

feedback connections are then passed between each of the nodes, whilst the nodes

themselves each have inhibitory loops which aim to counteract the excitatory loops

in the network. Should there be a balance between excitation and inhibition, then

messages are sent only once throughout the network, resulting in optimal inferences

(Figure 2.2C), top). However, should there be reduced inhibition so that there is over-

excitation in the network, then messages will be passed on multiple times throughout

the network (Figure 2.2C, bottom).

A set of equations that act recursively over the course of discrete time steps would

look like the following,

Mn+1
i j =Wi j(Bn

i −αMn
ji) (2.12)

Bn+1
i = ∑

j
Mn+1

ji (2.13)

Here, n indicates the time step, and Wi j is the strength of connection from node i onto

node j. The term Bi indicates the belief for the presence of the particular object at node

i, and is represented as a log odds ratio. That is, the belief at node i is given by,

Bi = log
(

pi

1− pi

)
(2.14)

where pi is the probability of the presence of the object, and 1− pi the probability of

the absence of the object. For instance, a belief of Blea f = 4 would be a strong belief

in favour of a leaf being present, whilst a belief of Blea f = 0 would equate to total

uncertainty about whether a leaf is present or not. A negative belief, say Blea f = −4,

would be a strong belief against the presence of a leaf.
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The negative term in Equation 2.12, −αMn
ji, is the inhibitory portion that aims to

cancel the message that node j sends in return to node i. A value of 1 for α would

denote full inhibition, whereas a value of 0 would indicate no inhibition and would

therefore generate circular inferences (Figure 2.2C). Different values for α can be given

for top-down inhibitory loops versus bottom-up loops. In the example shown in Figure

2.2, for messages sent down the network, for instance if j was above i in Eqtn 2.12,

then α is denoted αd for ‘downward’ messages, whereas the reverse direction would

be αc for ‘climbing’ messages.

Jardri and Denève (2013) used this model to show, via simulations, how impairing

the network by reducing inhibition leads to aberrant beliefs. As stated above, this is the

neural network version of the model. For simplicity however, an algorithmic approach

was later used by Jardri et al. (2017) and Simonsen et al. (2021), and is the version

used in this study too. Additionally, this model has only been tested in schizophrenia

(Jardri et al., 2017; Simonsen et al., 2021) and autism (Chrysaitis et al., 2021), but in

no other cases. This study therefore aims to apply the model of circular inference to

BD, which as stated in Section 1.1.4, shares many features with schizophrenia.



Chapter 3

Methods

3.1 Participants Recruitment

Participants were recruited through email circulation to colleagues and friends of the

author. A total of 14 participants signed up for the study. Questionnaire scores for

all 14 participants have been recorded, as well as evaluation feedback from 11 partic-

ipants. However, due to a technical error for which time unfortunately did not allow

for the resolution of, the experimental data for only 7 of the participants have been

recorded. The details regarding this technical error are discussed in Chapter 5. No de-

mographic details of the participants have been recorded, such as age, sex, education,

known psychiatric disorders, etc. The only information that can be assumed is that a

large proportion of the participants were students of the University of Edinburgh.

3.2 Questionnaires

Two questionnaires were used to assess participants personality traits in relation to

model parameters and experiment performance. The first was a shortened version of

the Temperament Evaluation of Memphis, Pisa, Paris and San Diego-autoquestionnaire,

otherwise known as TEMPS-A (Akiskal et al., 2005). This version of the TEMPS-A

questionnaire aims to measure 5 temperaments, or factors: cyclothymic (fluctuation of

high and low levels of mood), depressive (abnormally low levels of mood), irritable,

hyperthymi (abnormally high levels of mood), and anxious. Scores along these fac-

tors aim to capture emotional, cognitive, psychomotor and circadian traits that could

predispose someone to mood disorders (Akiskal et al., 2005). The questionnaire is a

‘yes-or-no’ type questionnaire. A ‘yes’ to a question increases the score by 1. Ques-

19
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tions 1-12 measure the cyclothymic factor, questions 13-20 measure the depressive

factor, questions 21-28 measure the irritable factor, questions 29-36 measure the hy-

perthymi factor, and questions 37-39 measure the anxious factor (see Appendix for

the full questionnaire). Scores for each of the five factors can therefore be taken inde-

pendently, as well as an overall score be given for all questions. The final scores for

each factor and the overall score are then normalised (by dividing the score by the total

number of questions for each category or by the total number of questions in the whole

questionnaire).

The second questionnaire used was the Autism Spectrum Quotient, or AQ (Baron-

Cohen et al., 2001). This aims to measure the degree to which participants have traits

associated with the autistic spectrum. It is a 50 question, agree/disagree type question-

naire (see Appendix for full questionnaire). This questionnaire was included in this

study for two reasons. The first is that, as was described in Section 1.1.4, there is a

strong overlap between autism, bipolar disorder, and schizophrenia. The second is that,

whilst circular inference has been applied to schizophrenia with positive results, a re-

cent application of circular inference in relation to autistic traits showed no correlation

(Chrysaitis et al., 2021). However, the key difference between the study of Chrysaitis

et al. (2021) and this one is that this includes a social element (the 4 agents, see next

Section). Social deficits in autism are a prominent symptom of the condition (Ameri-

can Psychiatric Association, 2013), and it could be that this experiment captures better

the behaviour of inference in social contexts relevant to autism. This would leave open

further research avenues that could later be explored.

These questionnaires were designed and hosted on Qualtrics (www.qualtrics.com).

The participants would first answer both of these questionnaires, and then upon com-

pletion of these they were redirected to the behavioural decision making task.

3.3 Behavioural Experiment – Modified Beads Task

The modified beads task experiment follows the same procedure as that of (Simonsen

et al., 2021). In this experiment there are 9 different jars each containing varying

proportions of red and green beads (Figure 3.1). One jar is selected at random and the

contents are hidden from the participant. 8 beads are then randomly drawn from this

jar. The participants are then told that a 9th bead will be drawn, and that they must

guess what colour, red or green, this 9th bead will be. In addition to the participant, 4

other simulated agents will perform the same task, drawing 8 beads from the same jar
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and guessing the colour of the 9th bead. The agents will also indicate how confident

they are in their guess (Figure 3.2). The participant will have access to the agent’s

guesses and confidences before they then see their own 8 drawn beads. It is important

to note that the agents, once having drawn their beads and made their guesses, then

replace the beads back into the jar before the participant takes their turn. Therefore the

proportions of red and green beads are the same for all agents and the participant when

drawing the beads.

The participants first perform 5 practice trials without any other agents, in order

to gain an understanding of the experimental procedure. In this practice session, the

participant is first described to them the set of instructions as described above, and are

shown the 9 jars each containing different proportions of red and green beads. On each

trial, the participant is told that a new jar has been chosen and then sees 8 beads that

have been drawn from this jar. They then must guess the colour of the next bead as well

as provide a confidence for their guess. By performing these practice trials, it should

be clear to the participant how the agents will then make their guesses. The procedure

for the practice experiment is shown in Figure 3.1.

After completing the first set of practice trials, the participants are told that they will

now perform the task with four other agents, as described above. These four agents

appear as neutral faces on the screen. The figures for these faces were obtained with

consent from the Radboud Faces Database (Langner et al., 2010). This time however,

whilst the agents will be providing a confidence, the participants do not – they only

need to guess the colour of the 9th bead. The participants first perform 10 practice

trials at a slow pace in order to properly understand the procedure, before performing

105 main trials at a quicker pace. The full procedure for the main trials, including

times between transitions in the experiment, are shown in Figure 3.2.

For each trial a random set of agents faces are selected. All possible 7 scenarios

for the number of red beads, ranging from 1 red bead up to 7 red beads, are randomly

presented to the participant. In addition, all 5 possible colour combinations for the

agents’ decisions, from 0 agents choosing red up to all 4 choosing red, are presented

to the participant. For simplicity, agents choosing the same colour have the same

confidence. Should the agents be split about the choice of colour, one set of agents

will always be confident whilst the other(s) will always be unconfident. This gives a

total of 35 trial combinations. This combination is then repeated randomly 3 times,

making 105 trials in total.

The behavioural task was hosted on Pavlovia (https://pavlovia.org) and developed
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using the PsychoPy software package (Peirce et al., 2019). Upon completion of the

behavioural task, the participants were then redirected back to Qualtrics in order to

answer a few short questions that aimed to evaluate the behavioural experiment.

Figure 3.1: In the initial set of practice trials the participants are first presented with

instructions for the task, including a presentation of the 9 jars (top left). They then

perform 5 practice trials. For each trial a new jar is presented along with 8 beads

from the jar, where the participant is then told to guess the colour of a 9th bead (top

right). Upon guessing a particular colour, the participant is then asked to provide a

confidence for their guess (bottom). Arrows indicate ordering of the frames displayed to

the participant.
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Figure 3.2: (Previous page.) The full procedure for 1 trial of the behavioural experiment.

Times indicate how long the previous frame is shown for before switching to the next

frame. At the start of each trial a new jar and set of agents are shown to the participant

for 0.5s. The agents each draw beads, taking up 2.9s to make their decisions. Uncertain

choices take slightly longer to appear than certain ones. The participant is given 2s to

observe the agents decisions before being presented with their own set of beads. The

participant then guesses the colour of the next bead, after which their selection remains

onscreen for 1s. A blank screen is then presented for 1s before the next trial begins.

See Figure 3.2 for the full graphical procedure of the experiment.

3.4 Evaluation Form

As the modified beads task described above, and first introduced by Simonsen et al.

(2021), is a relatively novel experiment, an initial evaluation of the experiment was

deemed important. This was in order to ensure that the participants were engaged and

retained a consistent level of focus throughout, that all task instructions were clear,

and to assess whether the design of the task, such as the choices of the agents being

independent of the participant’s beads, affected how the participants performed.

Five open-ended questions were asked to the participant. These included:

1. How did you feel whilst performing the experiment? (E.g., excited, bored, fa-

tigued, curious, etc.)

2. Did you have any issues whilst performing the experiment? Were the instructions

clear? Is there anything that would have made the experience better?

3. How long did you (approximately) spend on the entire experiment? Did it feel

long, short, or fine? Did this affect how you behaved in the experiment as it went

on?

4. The decisions of the agents were independent of the selected jar. Did you notice

this? If so, did it change how you made your decisions?

5. Is there any other feedback you would like to provide? (optional)

Each of the questions attempted to gather information on how the participants felt

and performed during the experiment, such that this feedback could be used to gauge

qualitatively how effective and engaging the experiment was.
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3.5 Models Development

For computational modelling of the experimental data, three models were implemented:

Simple Bayes (SB), Weighted Bayes (WB) and Circular Inference (CI). These were

each introduced in Section 2.2, but will be reproduced here for convenience. The de-

velopment of these three models for the specific case of the beads task presented here

is taken from Simonsen et al. (2021).

3.5.1 Simple Bayes

SB is computed, in log odds form, as a simple summation of the likelihood log odds

and the prior log odds,

Lr = Ls +Lo (3.1)

where Ls is the likelihood (sensory information) and Lo the prior. Recall that Lr is the

posterior log odds for the probability of the next bead being red, and is computed as

Lr = log
(

pr
1−pr

)
, where pr is the posterior probability of the next bead being red given

the number of red beads that were drawn from the jar. The likelihood is determined

from the number of red and green beads shown to the participant, and is computed as

the log of the ratio of the number of red beads to the number of green beads,

Ls = log
(

nr

ng

)
(3.2)

where nr is the number of red beads and ng the number of green beads. The prior

is determined from the guesses and confidence of the agents, and is computed as the

summation of the agents confidences and guesses,

Lo =
4

∑
k=1

CkOk. (3.3)

The term Ck is the confidence of the kth agent, and is equal to 0.5 if the agent is

‘unconfident’, and equal to 1 if the agent is ‘confident’. The term Ok represents the

choice of the agent, and is equal to a log odds of 0.9 if the agent chose ‘red’, and equal

to a log odds of 0.1 if the agent chose ‘green’. I.e., Ok = log
(0.9

0.1

)
if the choice is red,

and Ok = log
(0.1

0.9

)
if the choice is green.
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3.5.2 Weighted Bayes

Recall that the equation for the WB case is,

Lr = F(Ls,ws)+F(Lo,wo) (3.4)

where the function F(·) is described as,

F(L,w) = log
(

weL +1−w
(1−w)eL +w

)
. (3.5)

The terms Ls and Lo are again computed according to Eqtns 3.2 and 3.3, whereas

the weights, ws and wo, are constants representing how much weight is given to the

likelihood and prior, and both values should fall in the range [0.5, 1], as in (Simonsen

et al., 2021). Note that Eqtn 3.4 is the original model used by Jardri et al. (2017), and

the one used in this study, however, Simonsen et al. (2021) modified this slightly. More

will be said on this in the Discussion.

3.5.3 Circular Inference

Recall that the model for circular inference was given by,

Lr = F(Ls + I,ws)+F(Lo + I,wo) (3.6)

where

I = F(αsLs,ws)+F(αoLo,wo). (3.7)

As before, both Ls and Lo are computed according to Eqtns 3.2 and 3.3, and the weights

are constants as in the WB case. The additional terms αs and αo are constants that

indicate the number of reverberations of the likelihood and prior respectively, and range

from 0 up to 6.

3.5.4 Taking Actions as Bernoulli Trials

Once the log odds of the posteriors have been calculated for either of the three models,

the action of choosing the red bead in each model is modelled as a Bernoulli trial,

ar|pr ∼ Bernoulli(pr) (3.8)

where pr is the posterior probability of selecting a red bead, and can be computed from

the posterior log odds ratio, Lr, as,

pr =
eLr

1+ eLr
. (3.9)
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3.6 Model Fitting

Fitting each of the models to the behavioural data is done by maximum likelihood

estimation, or equivalently by minimising the negative log likelihood (NLL) (Myung,

2003). The likelihood (separate to the likelihood of Ls) is set using the probability

distribution for selecting the read bead in each trial. This is given by the Bernoulli

distribution as per Eqtn 3.8, which is a distribution parameterised by the posterior

probability, pr. The likelihood function can therefore be represented as,

L(pr|ar) = p(ar|pr)

=
n

∏
i=1

par,i
r,i (1− pr,i)

(1−ar,i).
(3.10)

The terms pr and ar are emboldened to indicate that these are vectors of posteriors

and actions for a whole sequence of trials. In the second line of Eqtn 3.10, the total

number of trials is given by n, and each individual trial is indexed by i. pr,i is therefore

the posterior probability for choosing a red bead in trial i, and ar,i is the action of

choosing a red bead in trial i, where ar,i = 1 if the red bead is chosen, and ar,i = 0 if

the green bead is chosen. The second line of Eqtn 3.10 is therefore the product of n

probability mass functions of the Bernoulli distribution for selecting a red bead in each

trial, assuming that each choice in each trial is independent of the other trials.

Taking the log of Eqtn 3.10 and negating it will then produce the NLL function,

NLL(L) =−
n

∑
i=1

[ar,i log(pr,i)+(1−ar,i) log(1− pr,i)] . (3.11)

One could then replace pr,i in each trial with the definition of pr from Eqtn 3.9,

as computed from either SB, WB or CI. Since SB is actually Bayes optimal there is

no fitting that can be done, though computing the NLL would give an indication as

to how close to being Bayes optimal a participant was. Fitting for WB and CI would

equate to fitting the parameters (ws and wo in the case of WB, and ws, wo αs, and αo

in the case of CI), which can be done by minimising Eqtn 3.11 with respect to the

parameters. The parameters are optimized with bounds, such that the weights ws and

wo are bounded to limits of [0,1] and the CI parameters αs and αo are bounded to

the limits [0,6]. To perform this minimisation, the ‘trust-constr’ optimisation method

found in the optimiser package of SciPy (Python 3.8) was used. This optimisation

algorithm is based on the constrained optimiser of Lalee et al. (1998).
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3.7 Model Evaluation

An important method in evaluating the effectiveness of each model is to perform pa-

rameter and model recovery (Wilson and Collins, 2019). These methods check that the

correct parameters and model can accurately be recovered. The basic principle is that

one first simulates fake data sets using a pre-selected model and parameter values, and

then using these sets fit the models and parameters and check how close the best fits are

to the original values. This way can one be more confident that the fitting procedure

outlines above gives meaningful results.

3.7.1 Parameter Recovery

In parameter recovery, a set of parameters are initially chosen for a particular model,

and using these parameters, a fake data set is then simulated. For this study, a series of

actions can be simulated using Bernoulli trials as per Eqtn 3.8. The task of parameter

recovery is to then reverse the process and, using the model method described in Sec-

tion 3.6, check whether the original parameters can successfully be recovered from the

simulated data set.

For each of the WB and CI models this process was performed 100 times using 100

randomly sampled parameter values. Each of the weights, ws and wo, were sampled

from a Uniform distribution with lower and upper bounds of 0 and 1, respectively. The

CI parameters, αs and αo, were sampled from a Uniform distribution with lower and

upper bounds of 0 and 6, respectively.

3.7.2 Model Recovery

The task in model recovery is to again simulate a fake data set using a set of pre-

selected parameter values, but here the task is to fit all models and test which model

then fits the data set best. So for instance, one could simulate data using the WB model,

and then fit the WB and CI model to this data set. The NLL score can be used for each

of the three models (SB, WB and CI) indicating which model fits the data best. A

simple method for assessing model fit is the Bayesian Information Criterion, or BIC

(Wilson and Collins, 2019). The BIC penalises the number of free parameters in the

model, which therefore not only measures how good the fit is, but also how simple

(and therefore least prone to overfitting) the model is. BIC is given as,
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BIC = 2 ˆNLL+ km log(n). (3.12)

The term ˆNLL is the NLL for the best fitting parameters of the model, whilst the term

km is the number of parameters that model m has. n is the number of trials. The best

fitting model is the one with the smallest BIC score.

For each of the three models 100 data sets were simulated using 100 parameters

determined using the same Uniform distributions as was used in parameter recovery.

This amounted to a total of 300 data sets (100 for each model being simulated). For

each simulated data set the WB and CI models were then fit, and a BIC score was then

computed for all three models. The model with the smallest BIC was then deemed the

winning model.

3.8 Code Availability

All code and anonymised data is available at the following Github repository:

https://github.com/MatthewTWhelan/circular inference BD.

https://github.com/MatthewTWhelan/circular_inference_BD


Chapter 4

Results

4.1 Questionnaires

There was a total of 6 factors that were measured via the two questionnaires. The

TEMPS-A questionnaire measured 5 factors (cyclothemia, depressive, irritable, hy-

perthermi, anxious), whilst the AQ questionnaire measured the autistic traits factor.

Normalised scores across all 6 factors are shown in Table 4.1. The distributions of the

normalised scores for these 6 factors are shown in Figure 4.1. In general, there appears

to be a relatively even distribution of scores for all participants across all 6 factors. A

full set of the scores for all participants is provided in the Appendix.

The focus of this study is on BD, which could be most closely related to the cy-

clothemia factor. It is interesting to note potential relationships between cyclothemia

Figure 4.1: Frequencies of the questionnaire scores for all participants. The 5 temper-

ament factors are coloured in blue, and the Autism-Spectrum Quotient is coloured in

red.
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Participant C D I H A AQ

P1 0.50 0.13 0.00 0.38 0.00 0.40

P2 0.92 0.75 0.75 0.38 0.33 0.46

P3 0.42 0.25 0.00 0.88 0.00 0.40

P4 0.33 0.38 0.13 0.38 1.00 0.52

P5 0.42 0.75 0.25 0.13 1.00 0.72

P6 0.17 0.25 0.25 0.13 0.00 0.60

P7 0.17 0.25 0.63 0.75 0.00 0.24

P8 0.08 0.13 0.13 0.75 0.00 0.18

P9 0.50 0.50 0.00 0.25 0.00 0.32

P10 0.42 0.25 0.25 0.38 0.67 0.38

P11 0.67 0.00 0.25 0.38 0.67 0.14

P12 0.67 0.88 0.38 0.63 0.33 0.40

P13 0.25 0.13 0.38 0.38 0.00 0.40

P14 0.83 0.63 0.25 0.63 0.00 0.36

Table 4.1: Normalised scores for all participants in the questionnaires. C = Cyclothemia;

D = Depressive; I = Irritable; H = Hyperthermi; A = Anxious; AQ = Autism-Spectrum

Quotient.

and the other temperament factors however. Figure 4.2 plots the cyclothemia score

against the other 4 temperament. The depressive factor has a significant positive corre-

lation with cyclothemia (Pearson correlation coefficient (r) = 0.554; p-value = 0.040).

The other correlations are not significant, but worth noting. Cyclothemia with: hyper-

thermi (r =−0.090; p-value = 0.760); irritable (r = 0.239; p-value = 0.410); anxious

(r = 0.278; p-value = 0.336).

Another set of relationships of interest are the temperament scores with the AQ

scores. Figure 4.3 plots the AQ scores against all 5 of the temperament scores. Whilst

none of these relationships are significant, there are two that are worth noting as being

near significant. There is a near significant positive correlation between the depressive

factor and AQ (r = 0.489; p-value = 0.076), and a near significant negative correlation

between hyperthermi and AQ (r = −0.482; p-value = 0.081). The other correlations

were not significant, but again worth noting. AQ with: cyclothemia (r = −0.004; p-

value = 0.988); irritable (r = 0.007; p-value = 0.980); anxious (r = 0.267; p-value

= 0.356).
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Figure 4.2: Plots of the cyclothemia factor against the other temperament factors for all

participants.

Figure 4.3: Plots of the Autism-Spectrum Quotient score against all 5 of the tempera-

ment scores for all participants.
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4.2 Model Evaluation

4.2.1 Parameter Recovery

The results of performing parameter recovery with the WB and CI models are shown

in Figures 4.4 and 4.5, respectively. The plots show the parameters used to simulate

the data against the parameters fit against that data. In the case of WB, there is good

parameter recovery for ws (r = 0.913; p-value = 6e-40), and an even better recovery

for wo (r = 0.985; p-value = 2e-76). For CI the parameter recovery is not as strong, in

particular for the CI reverberation weights α. Parameter recovery for ws is mediocre

(r = 0.506; p-value = 7.91e-8), whilst for wo it is slightly better (r = 0.797; p-value =

3.62e-23). Parameter recovery for αs is very poor (r = 0.011; p-value = 0.916), whilst

it is somewhat better for αo, though still poor (r = 0.106; p-value = 0.295).

4.2.2 Model Recovery

The results of performing 300 model recovery simulations is shown in the confusion

matrix of Figure 4.6. The confusion matrix values are normalised, showing the propor-

tion of occasions that each model won given the model that simulated the data. When

SB is used to simulate the data, the SB model successfully wins on all occasions. When

Figure 4.4: Parameter recovery for WB. 100 data sets were simulated using 100 ran-

domly sampled parameters. The parameters used to simulate the data are plotted

against the parameters recovered from fitting the model. Centre lines indicate perfect

recovery.
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Figure 4.5: Parameter recovery for CI. 100 data sets were simulated using 100 ran-

domly sampled parameters. The parameters used to simulate the data are plotted

against the parameters recovered from fitting the model. Centre lines indicate perfect

recovery.

WB is used to simulate the data, WB still achieves the correct recovery in 91% of the

occasions. When CI is used to simulate the data however, successful recovery only

occurs in 10% of the occasions. At 76%, WB is most often the winning model when

CI is used to model the data.
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Figure 4.6: Confusion matrix from the model recovery. 100 data sets were simulated

for each of the three models, after which each model was fit to the data sets. The

proportion of occasions for which each model won, computed using the BIC scores

(x-axis), given the actual model that generated that data set (y-axis) are shown here.
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4.3 Model Fitting

The WB and CI models were fit to the behavioural data of the 7 participants for which

data was gathered. A summary of the fit parameters are shown in Table 4.2.

WB CI

Participant ws wo ws wo αs αo

P1 0.50 1.00 0.98 1.00 0.41 2.65

P2 1.00 0.48 1.00 0.42 5.83 0.00

P5 1.00 1.00 1.00 1.00 0.13 0.00

P8 1.00 0.57 1.00 0.80 5.14 0.00

P9 0.33 0.47 0.28 0.46 0.62 0.29

P10 0.54 0.52 0.54 0.52 0.00 6.00

P14 0.00 0.36 0.00 0.25 0.00 0.18

Table 4.2: A summary of the fitted parameters for the WB and CI models for each

participant.

The NLL and BIC scores for each of the models per participant are shown in Table

4.3, with the winning models highlighted in bold for each participant. SB was the win-

ning model in 2 of the participants, WB was the winning model in 3 of the participants,

and CI was the winning model in 2 of the participants.

SB WB CI

Participant ˆNLL BIC ˆNLL BIC ˆNLL BIC

P1 4.11 8.23 2.39 14.09 0.00 18.62

P2 284.17 568.35 37.58 84.46 14.56 47.74
P5 9.01 18.02 8.96 27.23 8.85 36.31

P8 236.42 472.85 37.43 84.17 14.83 48.29
P9 350.27 700.54 71.10 151.51 71.07 160.75

P10 331.48 662.97 72.65 154.61 72.65 163.92

P14 436.87 873.74 40.46 90.24 40.34 99.30

Table 4.3: A summary of the negative log-likelihoods for the fitted models and the BIC

scores. The BIC scores in bold represent the winning model for that participant.
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4.4 Experiment Evaluation

The evaluation of the experiment was largely subjective, and based on feedback pro-

vided by the participants at the end of the experiment. Only 11 participants answered

the evaluation form. Despite this, there were some responses that were frequently

stated by a number of the participants. Some notable features from the evaluation are

provided for each question.

4.4.1 Question 1

The overwhelming response to how the participants felt during the experiment was one

of ‘bored’, which appeared in 5 of the participants’ answers. This feeling of boredom

went along with feedback that the task was ‘repetitive’ and ‘laborious’. One participant

in particular mentioned how ‘pushing through the 105 trials was a slog’.

4.4.2 Question 2

In response to whether there were any particular issues or whether the instructions

were clear, the majority mentioned there were none and that the instructions were

indeed clear. One participant did mention that they would ‘like to know the reasoning

behind the jars and beads part’, suggesting a clearer description of how the beads task

relates to the scientific hypothesis proposed may be a valuable inclusion.

4.4.3 Question 3

For the participants that provided a time, the range of times that it took them to com-

plete the experiment were between 25 minutes and 35 minutes. 5 of the participants

mentioned that it felt too long, with one participant even becoming ‘a bit disinterested’.

One participant even became ‘impatient’, and had to ‘resist the urge to rush’. Despite

this, a number of the participants (3) said it did not affect their behaviour through-

out the experiment, whilst 1 mentioned that it may have affected their answer as they

became less inclined to think about their answer due to the repetitive nature of the task.

4.4.4 Question 4

In response to whether the participants noticed that the agents chose independently,

and whether this affected their behaviour, there was quite a mixed response. 4 of the
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participants said they noticed that the agents were choosing independently, whilst 2

did not notice it. 2 of the participants decided to go with their own decisions, and paid

little attention to what the agents chose, whilst 1 participant based their choices ‘solely

on what the agents were saying’. 1 participant didn’t understand what was going on,

and so was ‘just picking the colours at random’.

4.4.5 Question 5

The final question asked the participants if they had any further comments. 3 partici-

pants had mentioned their observation that the agents would never agree with the same

confidence if they chose different colours. 1 participant mentioned that ‘it could’ve

been more realistic if the agents acted independently’ from one another.



Chapter 5

Discussion

This dissertation has presented a preliminary analysis on the potential application of

the circular inference (CI) model to bipolar disorder (BD). This preliminary analy-

sis did not explicitly include BD patients, but instead was conducted from a small

sample of colleagues of the author. The CI model developed by Jardri and Denève

(2013); Jardri et al. (2017) has been evaluated using a new experimental paradigm of

probabilistic decision making designed by Simonsen et al. (2021). To evaluate the

circular inference model, parameter recovery and model recovery analyses were con-

ducted alongside the simple Bayes (SB) and weighted Bayes (WB) models. Each of

these three models, SB, WB and CI, were fit to the behavioural data gathered from

the participants and BIC scores were computed to assess the best fitting model for

each participant. Additionally, two questionnaires were used to assess the participants

with regards to temperament traits and autistic traits. The temperament traits were

composed of 5 factors, including one of cyclothemia, which is closely related to BD

(American Psychiatric Association, 2013). Correlations between each of the temper-

ament traits were explored, alongside an exploration of these traits with respect to

autistic traits.

The parameter recovery analysis was conducted for both the WB and CI models.

In the case of WB parameter recovery was very good, giving confidence that fitting the

WB model to behavioural data with the assumption that a WB model produced that

data would provide a sufficiently accurate fitted model. Unfortunately, the recovery

was weak for CI. This weakness of recovery in the CI model has been shown before

(Chrysaitis et al., 2021), although it is particularly weak in this study. The same weak-

ness of recovery for CI was found in the model recovery analysis too. Whereas good

recovery was seen in the SB and WB models, CI was only able to recover the correct

39
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model in 10% of the simulations. This raises some questions as to the effectiveness of

the CI model.

Of the three models explored in this study, the SB model was taken from Simonsen

et al. (2021). Their model gave the likelihood and prior terms as functions of the num-

ber of red beads and the decisions/confidences of the 4 agents. However, given these

likelihood and prior terms, Simonsen et al. (2021) then altered the WB and CI models

slightly from those originally designed by Jardri et al. (2017). For instance, Jardri et al.

(2017) used the calculation Lr = F(Ls,ws)+F(Lo,wo) to compute the posterior. And

this was the form used in this study too, as shown in Eqtn 3.4. Simonsen et al. (2021)

meanwhile used a slightly modified version in which the agent confidences were in-

cluded in the wo portion of the above Eqtn, rather than in the Lo portion. To be more ac-

curate, their expression was something closer to Lr = F(Ls,ws)+∑k F(Ok,wo +βCk),

where Ok is the choice of agent k, and Ck is the confidence of agent k. They also in-

cluded therefore an additional term, β, into their computation. And the CI model is also

modified to be different to that used by Jardri et al. (2017). It could be then that these

modifications were necessary to overcome the shortcomings of using the original WB

and CI models. For instance, by including the β term, it is accounting for the possibil-

ity that each of the participants might weight the confidences of the agents differently.

Despite these modifications, the model recovery analysis performed by Simonsen et al.

(2021) gave 60% accuracy for the CI model. So although significantly better than the

model recovery found in this study, it still leaves possible questions over the accuracy

of the CI model.

Despite these doubts, it is perhaps important to note that when either the SB or

WB model was used to simulate data sets, the CI was never inferred as the best model

during model recovery. This is significant, as 2 of the participants were best fit by the

CI model. This result would suggest that the participants were indeed behaving in line

with CI, and not according to SB or WB. It is further interesting to note that of these

2 participants, one of them scored the highest cyclothemia score amongst all partici-

pants (P2). Whilst there is not enough data available to infer anything of significance,

this may be somewhat indicative. Indeed, the participant with the second highest cy-

clothemia score (P14) performed worse than all other participants in comparison to

the optimal strategy of SB, indicating an aberration in performance away from SB and

further evidence of increased weightings or interactions in the likelihood and/or prior.

One possible source of inaccuracy with using the WB and CI models of Jardri et al.

(2017) with the SB terms of Simonsen et al. (2021) is that the prior might be over-
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counted for. This is due to their being 4 agents, with each agent offering a maximum

contribution of log(0.9/0.1) to the prior term. Compared to the maximum contribution

of the likelihood, computed as log(7), the prior has a maximum value that is around 4.5

times larger than the likelihood. Rationally, this seems to make sense. If a participant

trusts that the agents are guessing to the same degree of accuracy as the participant

themselves, then the guesses of 4 agents should provide a greater deal of evidence

than the single participant alone. However, due to the design of this experiment, some

participants recognised that the agents were acting independently and chose to ignore

the agents, going only with their own decisions. Participant P14 adopted this strategy,

as documented in their evaluation form, and indeed performed worse compared to SB.

Participant P1 on the other hand chose to put more trust in the agents than in their

own sensory information, again as documented in the evaluation form. And for this

participant, they had the lowest (and therefore best) BIC score for SB. The closer the

participant is to performing according to the SB strategy, the less likely they are to be

best modelled by WB or CI with regards to the BIC score. But due to the biased nature

of the prior versus the likelihood, greater trust in the agents takes one closer to an

optimal, SB strategy, than does having greater trust in one’s own sensory information.

An additional point to raise is the range for the α parameters in the CI model. The

range of values that was chosen for this was between 0 and 6. However, the range that

was chosen by Jardri et al. (2017) was between 0 and 60. There is no particular reason

for choosing an upper limit of 6, other than selecting 60 gave somewhat worse perfor-

mance in the parameter recovery (data not provided). Given time constraints a more

thorough exploration of the effects of using different upper limits was not conducted.

However, it could be useful to do such an analysis, and to, for instance, sample a range

of upper limits by perhaps performing a grid search over those parameters, and using

this to estimate the most promising range for the α terms.

Despite some of the potential drawbacks of this study, it does raise some interest-

ing questions. For instance, does the number of agents matter to the decision of the

participant? If there were 4 agents versus 10 agents, would the participant place equal

weighting in the decision of all agents combined, or does the weighting increase as

the number of participants increases? And if so, how would this affect the modelling

choices? Including agents in this task produces a similar effect to the ‘conformity ver-

sus independence’ question raised in the Asch conformity studies (Friend et al., 1990).

In addition, research has shown that participants may behave differently when being

asked to respond publicly in front of the group compared to when responding privately
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(Bond, 2005). This again raises the question as to whether participants would behave

differently in front of 4 other people face-to-face, rather than doing so through the

screen of a computer, and particularly doing so in front of simulated agents. A number

of the participants were able to recognise that the agents acted independently of the

actual jar chosen. One potential method to work round this could be to use the prac-

tice portions of the experiment for which the participants took part in at the start of

the experiment, where they were made to give confidences. This data could be used

for other experiments, in replace of the simulated agents choices. This would remove

the independent nature of the agent guesses, making for a potentially more realistic

experiment.

Finally, it is worth noting the technical error that occurred with participants’ exper-

imental data. The experiment itself was designed using PsychoPy (Peirce et al., 2019).

Unfortunately, in its current version, PsychoPy does not allow for questionnaire type

forms to be designed, hence why the external site Qualtrics was instead used. But this

meant editing the JavaScript code that had been generated by PsychoPy in order to

automatically redirect the participant away from the experiment and to the evaluation

form on Qualtrics. It is believed that this could have caused an issue in some browsers,

since the line of code that was used to redirect the participant was placed just prior

to PsychoPy’s termination code. Unfortunately, placing it after the termination code

would result in the redirection not working. For future experiments then, this should

be carefully tested, ideally by testing the experiment on all the main browsers. Ideally

the experiment could be designed from scratch, rather than using an external package

like PsychoPy, for better control over the design of the experiment.

5.1 Future Work

There are two main directions for future work. One direction would be in improving

the modelling technique, whilst the other in designing an improved experiment.

On the modelling approach, it would appear sensible to adopt the modified though

slightly more complex model by Simonsen et al. (2021) for the WB and CI inference

models. Whilst they do have additional parameters compared to using the simpler ap-

proach by Jardri et al. (2017), these seem to prove necessary for adequate parameter

and model recovery. It may also prove useful to perform a search over the parameters

when performing parameter recovery, in order to determine sensible upper and lower

bounds and the region in which best recovery is possible. This is because if the recov-
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ery is not reliable for a given set of bounds, it is not possible to place much confidence

on the fitted parameters for a given data set.

In terms of the experimental design, there are a number of modifications that could

be made based upon the feedback received from the participants. An important mod-

ification would be to make the agents decisions more realistic. The current approach

was to use 35 combinations beads and agent decisions, such that agent decisions are

independent of the beads, as well as give agents who chose the same colour to have

the same confidence, with the other agents having a different colour and confidence.

One means to avoid this could that, for a randomly selected jar, to sample a number of

beads for each agent, and use the sample to produce a colour guess and confidence. For

instance, if there are 1 or 2 reds, an agent could make the decision ‘confident green’.

For 3 reds, ‘unconfident green’. For 4 reds, a random decisions with 50% probability

of either red or green coupled with being ‘unconfident’, etc. This may produce more

realistic decision making in the agents in order to ensure the participants do not ignore

the decisions of the agents. It may also be useful to test, via simulation, the minimum

number of trials needed to accurately fit the models. One could use parameter and

model recovery using a variety of different trial numbers, in order to test how many

trials is necessary before recovery accuracy reaches an asymptote. Ideally, the less

number of trials needed the better, given a large number of the participants found the

experiment to be ‘long’ and ‘boring’. Finally, there seems to be no reason not to sim-

plify the experiment, particularly given 2 of the participants did not understand how to

do the experiment. For instance, it could make sense to employ only 2 jars rather than

the 9 jars used in this experiment. These 2 jars could have opposing proportions of red

and green beads, such as a 40:60 split in one and a 60:40 split in the other. Rather than

guess the colour of the next bead, the participant could guess which jar has been cho-

sen given a random sample of x number of beads. This is very much like the original

beads task (Huq et al., 1988), except with the addition of the social element via the 4

agents.
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Questionnaires

A.1 TEMPS-A

The questions taken from TEMPS-A (Akiskal et al., 2005) were as shown on the next

3 pages. For each question the participant answered ‘Yes’, a score of 1 was added.
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A.2 Autism-Spectrum Quotient

The questions taken from the autism-spectrum quotient (Baron-Cohen et al., 2001) are

as shown on the next several pages. For questions 1, 2, 4, 5, 6, 7, 9, 12, 13, 16, 18,

19, 20, 21, 22, 23, 26, 33, 35, 39, 41, 42, 43, 45, 46, an answer of “Definitely Agree”

or “Slightly Agree” scores 1 point. For all other questions, an answer of “Definitely

Disagree” or “Slightly Disagree” scores 1 point.
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