
A VISION BASED STUDY ON

COLLECTIVE BEHAVIOUR IN

MAMMAL-LIKE ROBOTS

by

Matthew T. Whelan

Supervisor - Prof. Tony J. Prescott

A dissertation submitted in partial fulfilment of the requirements for
the degree of MSc in Computational Intelligence and Robotics

Department of Psychology
Department of Automatic Control and Systems Engineering

University of Sheffield

August 2017

Abstract

Collective behaviours are varied yet ubiquitous both within groups of biological and

robotic agents, with a vast amount of these behaviours requiring that the agents can

recognise their own kind. Presented in this dissertation are two vision algorithms that

have been implemented in a biomimetic robot named MiRo, in order that MiRo may

recognise another MiRo using its two front facing cameras. The first vision algorithm

utilises the histograms of a greyscale image space and inputs them into a perceptron

neural network that is pre-trained off-board. The second vision algorithm adopts the

SURF process combined with Bayesian inference for estimating a probability of an im-

age space containing a MiRo. Vision algorithm 1 achieves satisfactory classification

rates of 90.1%, whilst algorithm 2 manages to compute significant probabilities cor-

rectly 87.8% of the time. The most contrasting difference between the two algorithms

is the relative time taken to run each, with algorithm 1 performing 313 times faster than

algorithm 2, due predominantly to algorithm 2’s long computations when solving for

Bayes’ inference. Subsequent development was then conducted for a MiRo-MiRo fol-

lowing strategy, with the vision algorithms enabling MiRo’s to follow each other. This

success proved collective behaviours requiring MiRo recognition are now feasible.

i

In loving memory of my cousin, one of my best friends

Contents

Abstract i

List of Figures vii

List of Tables viii

Nomenclature ix

1 Introduction 1

1.1 MiRo . 1

1.1.1 The Control Architecture . 2

1.1.2 Sensors and Actuators . 2

1.2 Motivation . 3

1.3 The Challenge . 4

1.4 Aim and Objectives . 4

1.5 Overview of the Thesis . 5

2 Collective Behaviours – A Review 6

2.1 Collective Behaviours in Animals . 6

2.2 Collective Behaviours in Robotics . 8

2.3 Collective Behaviours – Conclusion 12

3 Vision – Biological and Artificial 13

3.1 Biological Vision – A Review . 13

3.2 Computer Vision – A Review . 15

3.2.1 Object Detection . 15

3.2.2 Motion Tracking . 18

iii

CONTENTS iv

3.2.3 Vision Depth Determination 19

3.2.4 Deep Learning in Computer Vision 21

4 Building a "MiRo Detector" 22

4.1 Thresholding for use in the Simulator 23

4.2 Algorithm 1 – Adaptive Thresholding, Histograms and the Perceptron . 25

4.2.1 Real-world Setting . 25

4.2.2 Correlations in Histograms . 26

4.2.3 Perceptron . 27

4.2.4 Region of Interest (ROI) . 31

4.3 Algorithm 2 – SURF with Bayesian Inference 35

4.3.1 SURF Detector . 35

4.3.2 SURF Descriptor . 37

4.3.3 An Application of Bayes’ Theorem in "MiRo-Detection" 39

4.4 Analysis . 43

4.5 Discussion . 44

5 Control Law 47

5.1 Following Control Laws – Review . 47

5.1.1 Kinematic Modelling . 47

5.1.2 Behaviour-based Control . 51

5.2 MiRo Control Law . 54

5.2.1 Development . 54

5.2.2 Optimisation . 57

5.2.3 Losing Track of TMiRo . 60

5.2.4 Analysis . 61

6 Real-World Experimentation in MiRo 62

7 Discussion and Conclusion 64

7.1 Vision Algorithms and the Controller 64

7.2 Adaptive Control . 65

7.3 A Final Discussion on Collective Behaviour 66

7.4 Looking Back at the Project Objectives 66

7.5 Conclusions . 67

7.5.1 Further Work . 68

8 Project Management and Self Review 69

8.1 Project Management . 69

8.2 Self Review . 70

References 70

Appendices 80

A.1 The Perceptron Algorithm – Python Source Code 80

A.2 Computing the value of w in the approximated Hessian determinant . . 87

A.3 SURF with Bayesian Estimation – Python Source Code 90

A.4 Vision Algorithm Training Images . 94

A.5 MiRo Controller – Python Source Code 95

A.6 A Proposal for an Adaptive Controller Strategy 99

A.7 Project Timing Plan . 101

List of Figures

1.1 The MiRo robot . 1

3.1 Schematic of stereo vision lenses . 20

4.1 Initial thresholding in the Gazebo simulator 24

4.2 Blue channel histogram . 24

4.3 Thresholding of TMiRo in a real-world setting 26

4.4 Stereo images of a TMiRo as viewed from MiRo 26

4.5 Using the thresholds in Figure 4.3 for a different scenario 26

4.6 Normalised histogram of the pixel intensity values for all 48 MiRo

training images . 28

4.7 Correlation matrix for the positivie training images 28

4.8 The perceptron algorithm for training a binary classifier 29

4.9 Optimising η in the perceptron algorithm 30

4.10 Optimising β in the perceptron algorithm 30

4.11 Greyscale images of TMiRo simulated with varying lighting conditions 34

4.12 Result in using the threshold according to Sauvoli’s formula 34

4.13 The results for the region of interest algorithm 34

4.14 Approximations of the Gaussian second order derivatives in the SURF

algorithm . 36

4.15 Interest points from the SURF detector 37

4.16 Haar-wavelets in the SURF algorithm 38

4.17 Plot for number of correctly classified feature vectors vs threshold value

when using Bayes’ with SURF . 42

4.18 Examples of false-negatives in the histogram/perceptron algorithm . . . 46

vi

LIST OF FIGURES vii

5.1 MiRo kinematic schematic . 50

5.2 Initial controller wheel speeds plot . 56

5.3 Simulator experimental setup for initial controller optimisation 58

5.4 Centroid position vs time for different values of γ 59

5.5 Plot of the optimised logistic function 59

5.6 MiRo’s stopping distance with the initial controller 60

5.7 A simple finite state machine. 60

5.8 Testing of the initial controller . 61

6.1 Running the controller in a real-world setting with a test object 63

6.2 Running the controller in a real-world setting with a TMiRo 63

A.4 All MiRo positive training images used in the vision algorithms training

and validation procedures . 94

A.7 Project Gantt chart . 101

List of Tables

1.1 MiRo’s sensors and actuators . 3

4.1 Comparison of the hitogram/perceptron algorithm vs SURF 44

5.1 Logic table for the B parameter . 55

5.2 Rise time, overshoot and settling time for different values of γ 58

8.1 Summary of the project’s milestones 70

viii

Nomenclature

Roman

b Baseline distance for stereo lenses (m)

C Centroid of a thresholded image space

c Correlation matrix

D MiRo wheels track distance (m)

D(·) SURF approximation of L(·)

d Euclidean distance between two vectors; Haar-wavelet response

e Error term

f Focal length of lens (m)

G Gaussian function

H(·) Hessian matrix; Object class

H(n) Modified logistic operator as function of n

h(x) Classifier for the input vector x

I Pixel intensity

ii(·) Integral image

K Kinematic controller gain matrix

k Constant used in Sauvola’s threshold formula; Logistic operator constant

L(·) Second order Gaussian derivative convoluted with an image space

M Image space moment

m(·) Mean image space pixel intensity

n Number of thresholded image pixels

ix

LIST OF TABLES x

R Normalising term used in Sauvola’s threshold formula

r MiRo wheel radius (m)

S MiRo forward wheel speed (m/s)

t(·) Threshold value for pixel intensities of images

V Velocity (m/s)

v SURF feature descriptor vector

w Weight vector in the perceptron ANN

w Weight in approximated Hessian determinant with SURF

x Single image histogram vector

y Output in the perceptron ANN

Greek

α Angle in polar coordinate frame (rad)

β Threshold in the perceptron classifier

γ Wheel speed controller constant

η Learning rate

θ MiRo global angle position (rad)

ρ Radius in polar coordinate frame (m)

σ SURF scale

σ(·) Standard deviation of image space pixel intensities

ω Angular velocity (rad/s)

Abbreviations

(A)MAS (Adaptive) Multi-agent System

ANN Artificial Neural Network

(D)DOF (Differential) Degrees of Freedom

SURF Speeded-Up Robust Features

TMiRo Target MiRo. The target MiRo is the MiRo that the current MiRo is

aiming to follow

Acknowledgements

My warmest thanks are offered to my supervisor, Professor Tony Prescott, for the con-

stant support provided throughout, and for the opportunity I have had in working with

a truly exciting development in the MiRo robot. I’d also like to extend my gratitude to

Dr Ben Mitchinson of Consequential Robotics, for whose support was so crucial in the

progress of this project, and to all else at the Sheffield Robotics lab whose help has in

no small part contributed to the success of this project.

To Dr Roderich Groß are my kindest of thanks given, whose lead and organisation

in the MSc Computational Intelligence and Robotics has resulted in the course being a

yearlong source of intellectual challenges and inspiration.

Finally, I shall be enduringly grateful for having being awarded the John Beadsmoore

Sheffield Postgraduate Scholarship, which has provided me with the opportunity to ded-

icate the entire year to my studies without financial concerns. For this my only means

of repaying such kindness has been and always will be to dedicate many of my efforts

and abilities to the endeavour of scientific understanding and discovery, in the hope that

many more will benefit from such undertakings.

Seeing is not a direct apprehension of reality,
as we often like to pretend.
Quite the contrary:
seeing is inference from incomplete information...

E. T. JAYNES, 2003

Chapter 1

Introduction

1.1 MiRo

Figure 1.1: The MiRo robot

MiRo was developed as a biomimetic robot, with

the intention of serving two primary purposes: the

first is in its use as a companion robot (Collins,

Prescott, and Mitchinson, 2015a); the second is for

entertainment and education (an edutaintment de-

vice) (Collins et al., 2015b). It therefore serves as

a useful platform for the study of mammalian be-

haviour in robots, and as such is the platform on

which this project is conducted. MiRo can be seen

in Figure 1.1.

There are numerous robots in existence that are

based upon biological animals, from commercial robots such as the PARO seal (Wada

et al., 2003) used primarily as a human-robot interaction device for psychological treat-

ments and FESTO’s BionicKangaroo (FESTO, 2017) developed to recreate complex

animal locomotion, to research-only based robotics such as for the study of early life

forms (McInroe et al., 2016). And this is no surprise, considering that nature has had

over 3 billion years to produce mechanisms far more sophisticated and able than the

current offerings in robotics and AI. Hence, there seems to be no better place to take

inspiration for the design of robots than from nature itself.1

1There has been made a strong argument that robots should not be restricted to the capabilities of

1

CHAPTER 1. INTRODUCTION 2

1.1.1 The Control Architecture

The MiRo attempts not only to mimic mammalian forms in its appearance, but to also

mimic the biological control architecture too (Mitchinson and Prescott, 2016). There

are three levels of control implemented in the MiRo, each with their own dedicated

processors and memory. Each level is intended to replicate the three primary levels of

processing that occurs in mammals, that is:

1. Spinal cord – the lowest level of processing. This level has fast execution, but

a low level of complexity and minimum amount of memory. This level of pro-

cessing is intended for executing signal conditioning on signals received from

its sensors, and for reflex behaviours, such as a "freeze reflex" that halts/inhibits

MiRo’s motions, sounds and LEDs if triggered.

2. Brainstem – a mid level processor. This level can complete more complex tasks

than the spinal cord and also has a greater amount of memory, but has slightly

slower execution time. Most of the core processing tasks are performed at this

level, including action selections, management of affective states and of actuator

motor patterns, amongst others.

3. Forebrain – the highest level of processing. This level has the slowest execution

time, but can perform the most complex tasks. There is an indefinite amount

of memory available at this level, with the only restriction being the size of the

SD card used. This level performs tasks such as mapping and even abstraction.

Perhaps the most exciting development available for this level is the inclusion of

a basal ganglia model, shown to effectively act as a central selection mechanism

(Gurney et al., 2004).

The reader is referred to (Mitchinson and Prescott, 2016) for a fuller account of the

control architecture found within the MiRo.

1.1.2 Sensors and Actuators

MiRo is equipped with a variety of sensors, both exteroceptive and interoceptive, and

actuators as shown in Table 1.1. All data is taken from the MiRo developer kit (Con-

animals/humans, and for non-biomimetic robotics this has some validity. But for a biomimetic robot, by
definition, this argument is redundant.

CHAPTER 1. INTRODUCTION 3

sequential Robotics Ltd, 2016). Only sensors and actuators with some relevance to the

project are reproduced here, and hence is not a complete list.

Table 1.1: MiRo’s sensors and actuators

Sensors
Sensor Quantity Further Specs
Microphones 2 10-bit @ 20kHz
Cameras 2 128x96 @ 25fps; 192x144 @ 25fps; 320x240 @ 8fps
Proximity 1 Sonar in the nose (30–300+ mm)
Light 4 Distributed about body skirt

Actuators
Actuator Quantity Further Specs
Drive wheels 2 Differential drive; max forward speed of 400mm/s
Body joints 3 Lift, yaw and pitch
Tail 2 Wagging and drooping
Ears 2 Each ear rotates independently
Eyelids 1 Eyelids open/close together
Sound output 1 Digital stereo audio @ 8kHz 10-bit

1.2 Motivation

MiRo currently does not have the ability to recognise another MiRo, either visually or

through other sensing/communication strategies. Yet it has been shown in other work

that conspecies recognition is important in the survival of mammals, for keeping stable

relationships, recognising mates and offspring, as well as other aspects of social be-

haviour (Hurst et al., 2001). In light of the importance of biological conspecies recog-

nition in the animal kingdom for certain types of collective behaviours, it is therefore

deemed necessary that MiRo should be able to at a minimum recognise another MiRo

– a form of "conrobotic recognition", or "MiRo-detection". Developing MiRo’s vision

system to allow it to recognise other MiRos would allow interaction amongst MiRos,

which would enable the development of a wider range of collective behaviours.

Further, once "MiRo-detection" is successful, this new ability will be used in order

to develop a basic form of collective behaviour – a following2 strategy, allowing one

MiRo to detect, track, and then follow another MiRo. It is thought that successful

implementation of a following strategy will form the basis upon which more complex

collective behaviours can be explored, such as herding and flocking.
2Henceforth italicised for clarity.

CHAPTER 1. INTRODUCTION 4

1.3 The Challenge

One of the most basic forms of collective behaviour is that of one agent following

closely behind or alongside another agent, and this is the primary challenge for this

project. The problem of one agent following another agent (the target agent) can be

broken down into perhaps three sub problems: (1) the agent needs to be able to detect

and then track the target agent; (2) the agent must be able to determine the distance

between itself and the target agent; (3) using the above information, the agent must

then have a control strategy that computes the necessary velocities in order to achieve

effective following of the target agent.

Therefore, in order to accomplish following behaviour in MiRo, each of the three

problems above must be dealt with individually. These then form the primary sub chal-

lenges of this project.

1.4 Aim and Objectives

Aim

To develop following behaviour in MiRo by addressing each of the three issues above,

through using MiRo’s two front facing cameras and a behaviour-based control ap-

proach.

Objectives – Basic

• Review literature on collective behaviour in robotics and in mammals/animals.

• Review literature on object detection techniques used in computer vision.

• Apply two or three detection algorithms to achieve "MiRo-detection".

• Statistically compare the generated algorithms and select one.

• Incorporate MiRo’s current motion detection ability with the "MiRo-detection"

algorithm to track MiRos.

• Develop a MiRo-MiRo following technique and perform simulations.

• Test the final controller on the physical robot to prove feasibility.

CHAPTER 1. INTRODUCTION 5

Objectives – Advanced

• Formulate more advanced collective behaviour, such as co-operative foraging

and/or herding.

1.5 Overview of the Thesis

Chapter 2 presents a review of the literature associated with collective behaviours,

exploring the wide range of collective behaviours found both from within biology and

robotics.

Chapter 3 then turns to the literature associated with vision, starting with aspects of

vision in biology/psychology and followed by a survey of computer vision techniques

used for object detection, motion tracking and object depth estimation.

Chapter 4 builds on the vision techniques discovered in Chapter 3 to build two

custom "MiRo-detection" algorithms in order to detect a MiRo; the first using image

grey-scale histograms and a perceptron neural network, the second using a vision algo-

rithm named SURF combined with Bayesian estimation.

Chapter 5 then investigates mobile robot control strategies, starting with a review

of a classical control method, after which a survey of behaviour-based robotics is pre-

sented, including reactive controllers and adaptive behaviours. The chapter then pro-

gresses to develop a custom MiRo control law that allows MiRo to follow an object it

detects from its vision algorithms.

Chapter 6 presents the results of some minor testing performed on the real-world

MiRo in order to display the feasibility of the developed controller, showing that the

optimised controller works well.

Chapter 7 will then bring the entire work coherently together with a discussion on

the combined use of the vision algorithms and the controller. Further, a proposal for an

adaptive control strategy is offered, followed by a review of the completion statuses of

the project’s aim and objectives. The chapter closes by concluding the thesis and offers

areas for additional work.

Chapter 8 gives a brief description of the project’s management before going on to

give a short self-review.

Chapter 2

Collective Behaviours – A Review

Collective behaviour is a varied field that can have various different meanings. The

purpose of this literature review is to first briefly describe what collective behaviour

means in the context of biological animals, by reviewing literature from within the

fields of zoology, biology and other related fields.

Collective behaviour is then studied in the context of robotics, which is more closely

related to the work conducted as part of this project. A discussion on the current state

of robotics collective behaviour is presented and contrasted with the types of collective

behaviour found in animals.

It is worth noting here that more in-depth technical reviews on biological/computer

vision and following control strategies are given in Chapters 3 and 5 respectively.

2.1 Collective Behaviours in Animals

Mammals and other animal types exhibit collective behaviours for various survival and

reproductive purposes, and is found in examples such as insect swarms, bird flocks and

mammal herds (Okubo, 1986).

Gautrais et al. (2008) discovered a density dependent-effect that altered the individ-

ual behaviours of fish in a shoal, suggesting that the behavioural states of fish alters

as the group size changes. The exact mechanism of how group density affects the fish

behaviour, such as whether the fish themselves are aware of the group size and thus

change their behaviour in response, or whether their behaviour is as a result of infor-

mation cascaded throughout the shoal therefore population density indirectly affecting

6

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 7

behaviour, remains unknown.

King et al. (2012) conducted a study on sheep herd behaviour, and specifically their

behaviour when under threat by a predator. They were able to apply statistical methods

to discover the motion of the sheep. Results showed that the sheep would move towards

the centroid of the group when threatened by a predator (in this case a sheepdog). The

sheep would instinctively move towards the centroid without knowing explicitly where

the centroid is – their behaviour was therefore based solely on local sensory informa-

tion, and not the global pattern of the group. One may note that the behaviour exhibited

by the sheep is described as part of the selfish herd theory presented by Hamilton (1971).

Okubo (1986) was one of the first to apply techniques to mathematically model the

dynamics of generic animal grouping behaviour, and therefore attempts to quantify as-

pects of collective behaviour. Mathematical models of grouping behaviour is important

particularly for developing collective behaviour in robots.

Ballerini et al. (2008) reviewed a number of other papers interested in modelling col-

lective behaviour, and proposed that in all cases, the models agree on three behavioural

traits: agents move in the same direction as their neighbours; they keep close to each

other; they avoid collisions. The authors also presented large-scale data on the features

of starling flocks, including shape, movement, density and structure, and showed that

all these features are emergent properties.

Sumpter (2006) argues that collective behaviour is best understood by identifying

the behavioural algorithms that the individuals follow, whilst also understanding how

and what information is transmitted between the animals. Again though, the emphasis

is on the individual and the behaviour of the individual, with the collective behaviour

being an emergent property.

Communication for effective transmission of information therefore is often nec-

essary for organising collective groups. One example of this is in pigtail macaques

(Maestripieri, 1996), which exhibit a wide range of physical gestures in order to com-

municate. Examples include bared-teeth and lip-smacking to indicate submissiveness,

nonthrusting mounts to indicate dominance, and puckering, which was found to be the

most frequently used gesture, which acted to summon another macaque. Even frogs

have been shown to exhibit a wide range of visual communication signals, such as toe

flagging, body jerking and limb lifting (Caldart, Iop, and Cechin, 2014).

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 8

Finally, it’s worth noting one study in relation to following behaviours in animals,

and baby chicks are a useful example here. It was observed early on that baby chicks

will form a memory of the first moving object they’re exposed to, and will follow the

object for some time after (Lorenz, 1937). Although the chicks respond to visual and

auditory cues from the mother hen, they will also respond to a non-auditory moving

visual object. This process is better known as visual imprinting (Maekawa et al., 2006).

2.2 Collective Behaviours in Robotics

Cazenille, Bredeche, and Halloy (2016) make note that there are different levels of

description available for modelling collective behaviour, from the macroscopic level,

which usually deals with the global state of the system and is typically described us-

ing ordinary differential equations, down to the microscopic level, which deals with

individual’s states and are often represented using Finite State Machines (FSM).

Collective behaviour in robotics tends to be analysed in terms of models and al-

gorithms, and run in simulation environments, rather than on physical robots. One

example of this is Calvao and Brigatti (2014), who develop an algorithm that aims to

achieve cohesion within swarms, using a method in which agents seek an ideal distance

between itself and its neighbours. They then applied the algorithm to the "selfish herd

problem", with some success (as studied by King et al. (2012) in sheep herding).

A useful outcome in the use of collective robotics is in self-organisation tasks with

biological agents. An example of this is given by Halloy et al. (2007), in which robots

were integrated with living cockroaches and were able to affect the group decisions

which allowed the robots/cockroaches to organise equally across two shelters. The

authors offer a set of differential equations to describe the dynamics of the robots and

cockroaches.

Isaeva (2012) relates the self-organization of biological systems to that of any other

type of network capable of self-organizing, and notes five points important for a network

to self-organize – feedback; stability; flexibility; modularity; and hierarchy. Note that

hierarchy could give the impression that agents in the group must not be homogeneous,

but this doesn’t necessarily have to be the case – hierarchy could be a consequence of

external factors such as agent positions, and could change at any moment.

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 9

Trianni and Dorigo (2006) developed self-organization of robots and compared

varying robot communication strategies to achieve the self-organization. These in-

cluded no direct communication, hand-crafted signalling and evolutionary communi-

cation. Results showed that the evolutionary approach was the most efficient for the

robots to achieve their self-organization activities, supporting the view that evolution-

ary approaches are superior to conventional design methods.

Self-organisation is popular in the field of multi-agent systems (MAS), as discussed

in great detail by Di Marzo Serugendo, Gleizes, and Karageorgos (2005). The authors

apply a definition to the term "self-organization":

Self-organization is . . . the mechanism or the process enabling a system

to change its organization without explicit external command during its

execution time.

In effect, the above is saying that the self-organization process of MAS should be

entirely automated. Additionally, a self-organizing system can be implemented using

decentralized control and is dynamic (system evolves in time).

Picard and Gleizes (2003) extend the theory of MAS to Adaptive Multi-Agent Sys-

tems (AMAS), and apply it to a robot transportation problem. They develop a non-

cooperative situation detection module (NCS detection module), which seeks to prevent

agents from performing tasks that are non-cooperative. Non-cooperative tasks must be

determined by the user and for each level of the system (robot level, state level and

activity level).

Communication is ubiquitous and highly useful in collective agents, whether bi-

ological or artificial, and can be divided into three classes: indirect communication

(stigmergy), direct communication and direct interactions (Trianni and Dorigo, 2006).

There is a line of study found in literature related to adaptive communication, or the

ability for agents to evolve communication strategies (Marocco, Cangelosi, and Nolfi,

2003; Nolfi, 2005; Althnian and Agah, 2016). The usefulness in the evolutionary ap-

proach is that the agents develop the minimum amount of communication necessary for

them to achieve their goal, without the need for the user to invoke extraneous commu-

nication information or to restrict the agents to a less efficient communication strategy.

Communication is not always necessary to achieve collective behaviours, and non-

communication strategies can sometimes be more ideal. Kube and Zhang (1993) take

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 10

inspiration from the social behaviour of insects in order to develop non-communicative

collective robotics. They note that although agents with the ability to communicate

should be more effective, scaling up the number of agents becomes a problem with

communicative approaches, and non-communicative approaches simplifies this. Again,

emergent behaviour is a clear theme. In later work Kube and Zhang (1996) apply their

ideas to the challenge of having multiple robots move a box. One robot alone does not

have enough power to move the box, hence they must cooperate to achieve the goal.

Though the algorithms implemented in each robot makes no mention of working with

other robots, their behaviour emerges in a cooperative manner and they successfully

accomplish the task collectively.

Rodríguez, Gómez, and Diaconescu (2015) implement a foraging strategy on a

multi-bot system that has each agent contain their own personal internal maps. In-

formation between the agents is shared via Trophallaxis, a technique in which agents

exchange information between each other when both occupy adjacent locations. This

approach is found in nature, and generates a trophallactic cascade scheme. The study

of trophallaxis is primarily interested in how food/nutrients or pheromones are trans-

ferred between social insects (Suárez and Thorne, 2000), but one could easily extend

this phenomenon to robotics, with the transfer of information, as performed by Ro-

dríguez, Gómez, and Diaconescu (2015), or even transfer of energy. Ngo and Schiøler

(2008) design such an energy trophallactic system, and argue that true autonomous ma-

chines should not just be behaviourally autonomous, but energetically autonomous too.

Hence their robot design allows agents to autonomously seek energy sources but also

transfer energy between each other. In fact, their design involves the exchange of phys-

ical batteries between the bots – a necessarily precise and energetic task, but one that

overcomes other difficulties involved with wireless charging such as efficiency loss and

charging times (Wang and Wei, 2015).

The above used a foraging strategy in which the agents each held individual internal

maps of the environment. Burgard et al. (2000) use collaborative robots to increase the

efficiency of exploring unknown environments by using a global map. Occupancy grid

maps are utilised, and the following formula is used for when the robots build up an

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 11

internal map of the environment,

1
P(occx,y)

= 1+
n

∏
i=1

1−P(occi
x,y)

P(occi
x,y)

(2.1)

The above describes the probability of some space with coordinates < x,y > in the

global map being occupied by an object/wall, that is P(occx,y), in terms of the individ-

ual robot’s probability of the < x,y > coordinate being occupied by an object, that is

P(occi
x,y), whilst n represents the total number of robots. Hence, the robots are collab-

orating to build a more accurate global map for an unknown environment. The authors

then introduce a cost function for each robot exploring a frontier cell (a point that has not

been explored), hence allowing the robots each to explore areas with the least amount of

cost. This cost function is based on value iteration – a dynamic programming algorithm

(see (Bellman, 1957)).

Other applications for collective robotics is in machine learning techniques. One

issue in reinforcement learning (RL) algorithms is that of finding the optimal policy.

Yahya et al. (2016) use the experiences of multiple robots in order to have them collec-

tively learn an optimal policy for a robotic manipulator task (opening a door). The RL

algorithm is implemented on a global neural network.

Mérmoud (2012) introduces the idea of Smart Minimal Particles (SMPs). Smart

in that the agents are given an internal state (such as energy level), which is affected

due to interactions with other agents and the environment. Minimal in that they have

only basic amount of sensing, actuation, computation and communication, as well as

not having the capability to hold internal representations of their environment. And

particles due to the agents taking physical forms that consume a portion of physical

space. Examples of SMPs are wide ranging, and they do include multi-robot systems

(Kernbach, 2012).

Landgraf et al. (2010) built a honeybee robot in order to better understand the danc-

ing communication system that occurs between honeybees (direct communication).

Hence, by having full control over certain mechanisms in the robot (such as wings,

body etc.) the authors could analyse exactly how certain signals impact the information

sent and received by the honeybees.

CHAPTER 2. COLLECTIVE BEHAVIOURS – A REVIEW 12

2.3 Collective Behaviours – Conclusion

Of all the papers reviewed above, what is clear is that collective behaviour is on the

whole an emergent property. This suggests that the rules of the collective are governed

by often simpler rules at the level of the individual. The simplistic behaviour traits

laid out by Ballerini et al. (2008) – that agents move in the same direction as their

neighbours, keep close to their neighbours, and avoid collisions – are realistic traits

that could be implemented in the MiRo and could form the basic rule set necessary

to accomplish the objective of MiRo-MiRo following behaviour. The literature and

experimental results on visual imprinting in baby chicks adds further justification as to

why the development of a following strategy is not only interesting, but is relatable to

phenomenon seen in the animal kingdom.

The literature on collective robotics is intrinsically linked with work on MAS and

self-organisation, and the link between collective robotics and collective animal be-

haviours is clear (the term Animats is used specifically to describe the transference

of animal behaviours and characteristics into robotic/artificial imitations – see Section

5.1.2 for a further discussion on how this relates to behaviour-based robotics, and also

refer to the conference series From Animals to Animats (1990–2016) for more). Not

only has research on biological behaviours helped in development of robotics, the inte-

gration of robotics into biological settings has proven useful for research into collective

behaviours found in nature.

Fine and Shell (2013) point out that the studies completed in literature on collective

flocking behaviours are “reported without explicitly detailing the sensing capabilities,

limiting assumptions, and/or computation capabilities of the individual flock members.”

Robotics should allow a deeper investigation of these issues, considering robots allow

easier manipulation and control over sensing and computation capabilities. The selfish

herd problem as well as group density effects are phenomena that could potentially be

explored further in a robotics environment using the MiRo.

Chapter 3

Vision – Biological and Artificial

This chapter aims to provide an overview of the aspects and characteristics of vision

from within biology, and then to introduce computer/artificial vision techniques that

can be found in the computer vision literature. These will include a review of object

detection, motion tracking, and depth estimation strategies, both from within biology

and in computer vision.

3.1 Biological Vision – A Review

Recall the process of visual imprinting in baby chicks mentioned briefly in Chapter 2;

visual imprinting is intrinsically linked with invariant object recognition, with Wood

and Wood (2015) arguing that newborn chicks are ideal model systems for studying

the emergence of invariant object recognition, precisely because of their imprinting

behaviour. This imprinting is first processed in the visual Wulst (VW), which is analo-

gous to the mammalian visual cortex, before eventually being stored in the Intermediate

Medial Hyperstriatum Ventrale (IMHV), or informally the domestic chick’s forebrain

(Horn, McCabe, and Cipolla-Neto, 1983; Nakamori et al., 2013). Zebrafish have been

shown to imprint their kin via visual cues as well as olfactory cues (Hinz et al., 2013),

thus there are a number of strategies for imprinting that take place in nature. Interest-

ingly, unlike the chicks, zebrafish respond only to the imprinting cues of their own kin,

and don’t respond to nonkin.

However, much of the research performed on biological object recognition has been

conducted on humans. (Biederman, 1987) proposes that human object recognition is

13

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 14

done through the detection of component parts – that is simple volumetric entities such

as cubes, cylinders, arcs, generalised cones – and their relations to one another. This is

better known as recognition-by-components theory (RBC). Such an approach is similar

to other proposals on object detection via parts/modules (Brooks, 1981; Tversky and

Hemenway, 1984)

Further experimental work conducted by Biederman and Ju (1988) produced re-

sults showing humans can readily identify objects of full colour and detail (photos) as

rapidly and error-free as they could recognise the same objects but as simple line draw-

ings without texture or colour. This shows that edge-based features of objects, or more

generally local features (Uchida, 2016), are more dominant in object detection than sur-

face features. This is not to say surface features aren’t important in object recognition,

as Tanaka, Weiskopf, and Williams (2001) notes that surface features can be extremely

useful when edge information is limited, such as when objects are occluded. In fact, ex-

perimental work conducted by Wood (2014) showed that baby chicks bind colour with

shapes during the imprinting process, thus indicating colour does at least play a role in

enabling the chicks to recognize the imprinted object.

Wolfe (2010) describes how visual search tasks are performed in concentrated spaces,

or, that when humans are searching for an item, their visual salience is guided towards

objects similar to the one they’re searching for, at the expense of other possibly salient

objects. A well known example of this phenomenon is the invisible gorilla experiment

(Simons and Chabris, 1999).

But following requires more than just object recognition, it also requires object mo-

tion tracking. Smeets and Brenner (1994) propose a "motion detector" ability by hu-

mans that is triggered by relative motion of objects. This claim is further backed by

Orban (1992), who demonstrated that motion is processed in the middle temporal area

(MT) of the visual cortex (or V5).1

Rushton and Warren (2005) go further in producing experimental results indicating

that humans can discern the speed of motion of an object from the relative motion of

the retinal eye movement and movement of the object. Experimental work conducted

by Wit et al. (2011) demonstrated that humans do not actually have a specialised role

1For the interested reader, Orban also mentions how the other areas of the visual cortex interpret
scenes, starting with V1 as being a clearing-house, sending messages to other areas for further processing,
such as V4 for colour, form in V3/V4 and stereo in V3 (Orban, 1992).

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 15

for tracking humans, but are able to track most efficiently grouped, coherently moving

objects in an object-based attention mechanism (Scholl, 2001). This agrees with the

RBC theory presented by Biederman (1987), in which humans find it easier to track the

coherent movement of segmented objects.

Finally, Watson and Yellott (2012) studied the effects of pupil size on the function

of vision, applying a mathematical model to describe the relationship between pupil

diameter and luminance. Such adaptation of pupil size effects the ability of the eye to

compute field depth, retinal illuminance and contrast sensitivity.

3.2 Computer Vision – A Review

This review is intended to introduce the reader to some of the computer vision tech-

niques available from within the literature. Some of these techniques will be applied in

MiRo, of which a fuller account can be found in Chapter 4.

3.2.1 Object Detection

Thresholding

The simplest detection method is perhaps binary thresholding, offering the ability to

segment an object from its background, and can often simplify the task of further image

analysis (Weszka, 1977).

Take for instance an 8-bit image of arbitrary resolution. Setting upper and lower

pixel intensity thresholds, one could apply a threshold operation to each pixel, Pi, in the

image and map the resulting thresholded image to a new binary image space, A:

for all pixels in image do:
if Pi > threshLower and Pi < threshUpper:

Ai = 1
else:

Ai = 0
Ri = 255*Ai

Notice that the binary image space, A, is then mapped into a third image space, R,

making the resulting thresholded image easier to view.

Thresholding can work well under conditions of controlled lighting. Assuming this

is the case, the problem of determining a suitable threshold is still unresolved. For prac-

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 16

tical purposes, this often requires experimentation, and adjustments to the thresholds are

done "by eye" (Davies, 2012, p. 85).

A more interrogative approach is to sum the number of pixels at a certain intensity

level (i.e. to build a histogram), and to use some minima as the threshold values, known

as the mode method (Weszka, 1977). Although typically this is done on grey levels

of pixels, one could easily expand it to cases of RGB pixels, thresholding each colour

channel in turn.

The histogram approach was used successfully by Otsu (1979) on grey-level images

to choose a suitable threshold level. By treating the histogram as a probability density

function, it can then be used to predict the probability that a certain pixel of some

intensity belongs to either the object in question, or to the background. The advantage of

Otsu’s method is that there does not need to be any a priori knowledge in its application.

Sauvola and Pietikäinen (2000) were able to use adaptive binarization (discussed

in further detail in Section 4.2.4) to set a threshold that was a function of the mean

and standard deviation of image intensities. Such adaptation is useful for overcoming

illuminance changes across images (recall the eye’s ability to adapt pupil size to achieve

similar effects (Watson and Yellott, 2012)).

Feature detectors/descriptors

Another popular technique for object recognition is through local features. Uchida

(2016) produced an in depth survey of local feature detectors, of which there are nu-

merous techniques available, and include but are not limited to: Harris, Hessian, SIFT,

Harris-Laplace, Hessian-Laplace, SURF, Harris-Affine, Hessian-Affine (Davies, 2012).

They differ in their invariance, for example, Harris has rotational invariance, SIFT has

scalable invariance, and Harris-Affine has affine invariance, where invariance is the ro-

bustness of the detector to those particular transformations (Uchida, 2016).

Feature extraction is the first stage in object recognition using local features. It is

an image processing technique that extracts "interesting" areas of an image. What is

deemed "interesting" can be arbitrary and dependent on the application, but generally

this includes edges, corners and high-density regions (blobs). Homogeneous or overly

repeated patterns in images are usually considered uninteresting. Feature extraction is

already a widely researched area, and an in depth discussion of the various edge, corner

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 17

and interest point detection techniques are given in (Davies, 2012, p.111-184).

Upon extracting interesting features from an image, detecting an object then re-

quires a feature descriptor operation, which builds multi-dimensional feature vectors

from those detected feature points/regions. One can than match these feature vectors

to a query feature vector in order to determine the similarity between an object in an

image and a query object (Uchida, 2016).

SIFT (Scale Invariant Feature Transform), introduced originally in (Lowe, 2004), is

a commonly used feature detector/descriptor algorithm, and as such is often a baseline

detector that gives good comparisons for other detectors. Due to its significance, the

form of the algorithm will be introduced here. Lowe presents the algorithm in four

major steps:

1. Scale-space extrema detection: The difference-of-Gaussian function (DoG) 2 is

used to discover interest points that are invariant to scale and/or orientation.

2. Key-point localization: At each interest point, location and scale is found by fit-

ting it to a detailed model, and key-points selected according to their stability

measures.

3. Orientation assignment: Local gradient directions are used to appoint orienta-

tions to each of the key-point locations. Then, invariance in scale, orientation and

location is realised for each feature, and further processing can occur with these

features.

4. Key-point descriptor: Local gradients at some selected scale are found around re-

gions at each key-point, and transformed to accommodate local shape distortions

and variations in illumination.

Further feature matching is subsequently conducted by first extracting features from

a set of reference images. Then, by comparing the reference feature vectors to new

images using a fast nearest-neighbor algorithm, object detection can be accomplished.

Unfortunately, SIFT has shown to be comparatively slow versus newer algorithms.

One such example is the SURF (Speeded-up Robust Features) operator (Bay, Tuyte-

laars, and Van Gool, 2006), shown to increase detection speed in various ways. Pre-

ceding SURF was work conducted by Viola and Jones (2001). Their approach was to
2See (Lindeberg, 1994) for justification for using the DoG operator rather than the Laplacian.

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 18

use an integral representation of the images, a machine learning algorithm based on

AdaBoost, and a "cascade" scheme which enables the background of an image to be

disregarded allowing more computation time on important regions. The integral image

representation is a key feature of the SURF operator.

SURF and Viola/Jones’s (henceforth referred to as Cascading, or the Cascade oper-

ator) algorithms both proved to be fast enough to be used with the MiRo. SURF, using

a Fast-Hessian detector, had a computation time of 120ms (Pentium IV, 3GHz). Cas-

cading could succesfully detect faces at a frame rate of 15fps, or a computation time

of < 67ms (Intel Pentium III, 700 MHz). MiRo’s P3 processor for reference clocks at

1GHz, with standard camera frame rates of 4-8fps.

3.2.2 Motion Tracking

The task of then tracking an object falls primarily into the theory of optical flow, which

at a basic level involves the computation of the change of pixels with equal intensities

(i.e. local invariant features) across the image and across time (Davies, 2012). A pop-

ular addition is to incorporate a Kalman filter; not only can the Kalman filter predict

future velocities and positions of the local features, but it can smooth noisy velocities

that may be caused by robot disturbances (Wang et al., 2014).

Optical flow can be described mathematically as follows: if some point at (x,y, t)

changes position by (dx,dy) within time dt, then the intensity at (x+dx,y+dy, t +dt)

should equal the intensity at (x,y, t), assuming there is no intensity changes for the same

points in the image. I.e.

I(x+dx,y+dy, t +dt) = I(x,y, t) (3.1)

Taking the Taylor expansion of the intensity function, and ignoring the second and

higher order terms, gives,

I(x+dx,y+dy, t +dt) = I(x,y, t)+
∂ I
∂x

dx+
∂ I
∂y

dy+
∂ I
∂ t

dt (3.2)

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 19

where I = I(x,y, t). Therefore, from (3.1) and (3.2) the following holds,

∂ I
∂ t

=−
(

∂ I
∂x

dx
dt

+
∂ I
∂y

dy
dt

)
(3.3)

which can be written succinctly as,

∂ I
∂ t

=−∇I ·v (3.4)

where,

v =

(
dx
dt

,
dy
dt

)
(3.5)

But this produces two problems: edges parallel to the direction of motion will be

unrecognized, as (3.4) will equate to zero; and regions with constant intensity will result

in ∇I = 0 so that (3.4) will again equate to zero.

Additionally, Equation (3.4) is actually ill-posed, as there are two unknowns in v

with only one formula. One solution was offered by Horn and Schunck (1981), by

using the gradient constraint given from (3.3) and then minimizing through an itera-

tive approach a global smoothness term. However, this approach is computationally

expensive and hence most likely not suited for the MiRo.

A more efficient approach was proposed by Wei et al. (2011), in which a self-

adaptive window is used, saving on computation cost, and Otsu’s method for choosing

a grey-level threshold (see above).

3.2.3 Vision Depth Determination

Building an accurate 3D representation of a scene with a single optical system is a

nontrivial problem to solve, due to the perspective projection that depth imposes (in

which parallel lines no longer appear parallel and midpoints don’t appear to be at their

midpoints) (Davies, 2012).

Nature has predominantly solved this task through the use of dual optical systems,

whilst in computer vision scenarios, stereo vision techniques have been developed that

can solve the particular problem of depth analysis (Scharstein, 1999). To introduce

the reader to the simplicity of depth analysis with stereo vision, an example taken from

(Davies, 2012) will be considered. Two lenses with parallel axes sets are given as shown

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 20

in Figure 3.1.

Figure 3.1: Stereo vision with two lenses, both having parallel axes systems.

Here the same point in the scene, given with co-ordinates (X, Y, Z), is viewed in

two lenses at positions (x1, y1) and (x2, y2). It is simple to show that the depth, Z, can

be computed as,

Z =
b f

x1− x2
(3.6)

where b is the baseline distance between the lenses and f is the focal length of the

lenses. Clearly, if the parameters of both lenses are known, then Equation 3.1 becomes

trivially easy to solve.

What becomes nontrivial however is determining whether two points in the images

really do equate to the same point in the scene. Hence the need for robust local feature

detectors, and usually utilising more than one point in the scene. To tackle this issue,

there are two techniques available to solve this correspondence problem – one is that

of "light striping" (Jokinen and Haggrén, 1998), and another method is using "epipolar

lines" (Ishikawa and Geiger, 1998).

There can, however, be the case in which the lens axes are not parallel to one another,

and a closer inspection into how camera geometries affect the image projections can be

found in (Xu and Zhang, 1996). Not only does this work describe detailed camera

modelling techniques, it also contains useful methods for projection computation using

the single pinhole camera model. Then, using simple properties such as the space an

object consumes in an image, depth and distance of an object can be predicted. This

falls into the category of perspective projection modelling, a methodology used widely

CHAPTER 3. VISION – BIOLOGICAL AND ARTIFICIAL 21

for 3D image reconstruction (Fang and Lee, 2012), but also used in motion estimation

tasks (Eichenseer, Batz, and Kaup, 2016).

Without computing depth, information about potential collision of a moving camera

can be estimated using the focus of expansion (FoE) of points in an image. This method

exploits the principle that as an object is approached, its appearance in the image in-

creases in size, but that the increase is about a centre point, termed the FoE. Some early

work conducted by Negahdaripour and Horn (1989) used the FoE to recover motion of

the camera relative to a still scene, with later work by Gil-Jiménez et al. (2016) showing

an improved algorithm that could perform this operation in real-time.

3.2.4 Deep Learning in Computer Vision

This section serves primarily to highlight the growing importance of deep learning tech-

niques for computer vision, and seems appropriate since deep learning is inspired in part

by biological systems. At a basic description, deep learning is a class of machine learn-

ing that analyses large datasets and extracts the intricate structures that exist in the data

(LeCun, Bengio, and Hinton, 2015). In contrast to the techniques discussed above that

require careful design of algorithms for feature extraction, deep learning can use each

layer to detect features "of its own accord". An example of this process could be in

images: the first layer could detect edges and their orientations, the second layer could

detect the particular arrangements of edges, whilst the third layer could detect particular

objects as a result of the arrangements, and so on (LeCun, Bengio, and Hinton, 2015).

Deep learning is used with great success in many detection/recognition vision tasks

through convolutional neural networks (CNN) (Sermanet et al., 2013; Girshick et al.,

2013; Simonyan and Zisserman, 2014), a technique inspired by the biological visual

cortex. Some CNNs can even outperform human recognition rates (Ciresan et al., 2012).

Chapter 4

Building a "MiRo Detector"

Two vision algorithms were then developed through using various techniques from the

literature discussed in Chapter 3 for use in MiRo in order to develop a "MiRo detector".

Before introducing each of the two algorithms, this Chapter begins with a short

section on thresholding within the simulator environment. The reason for developing

a vision algorithm exclusively for the simulator is that it becomes highly useful to use

when testing controller strategies, and hence is the reason for inclusion. The description

for this is given in Section 4.1.

The first algorithm, Algorithm 1, uses predominantly pixel intensity thresholding

techniques and a histogram approach for determining the ideal threshold limits. It then

introduces a novel method of MiRo detection that builds on thresholding and the his-

tograms, by using the histograms of the greyscale images as inputs to a perceptron

neural network. The development for Algorithm 1 is given in Section 4.2.

The second algorithm, Algorithm 2, is an application of SURF which, as discussed

in Chapter 3, is an extension of SIFT and Viola/Jones’s integral image technique. But

the SURF algorithm is expanded further here, by applying it to a Bayesian inference

framework in order to estimate a posterior probability of TMiRo existing in an image.

The development for Algorithm 2 is given in Section 4.3.

Each algorithm is introduced in turn, with a detailed description of the technical

aspects of each, followed by an example of their implementation on images of MiRo.

The two algorithms are then analysed and compared to determine the computation times

and detection accuracies for each. The Python source code is given in Appendices A.1

and A.3 for Algorithm 1 and 2 respectively.

22

CHAPTER 4. BUILDING A "MIRO DETECTOR" 23

4.1 Thresholding for use in the Simulator

In order to detect TMiRo in a simulated environment, the simpler detection method

of thresholding was first implemented. This section serves as an introduction to using

thresholding for object detection, but does not form part of the final vision algorithms –

as previously stated, its purpose is for use within the Gazebo simulator only.

The detector was therefore developed using simulated images of MiRo taken from

the Gazebo simulator. To ensure adequate segmentation of MiRo from the background,

MiRo’s body is given the colour blue in order to distinguish it from its surroundings.

Six thresholds then need to be set: an upper and lower limit for each of the three colour

channels. Initially, this is done through an educated guess, and altered slightly until

MiRo is successfully segmented from the background. The thresholds are found at [R,

G, B]:

threshLower = [0, 0, 100]
threshUpper = [10, 10, 255]

Running the threshold algorithm from Section 3.2.1 three times for each colour

channel gives the result shown in Figure 4.1b. The average number of pixels success-

fully thresholded over the left and right camera streams was 3,052. Plotting the his-

tograms for the blue colour channel of Figure 4.1a is given in Figure 4.2. Notice that

there is a large spike at a blue intensity of approximately 180, suggesting most of the

blue pixel values exist here. However, there are some mini spikes at 100 and 255 (ignor-

ing the spikes near 0). Therefore, sensible thresholds for the blue colour channel could

be between 90 and 255. Doing the same for the green and red colour channels can be

used to threshold ‘out’ rather than ‘in’ the background. Sensible upper thresholds were

found to be 80 for red and 50 for green.

Hence, the new thresholds using the mode method is given as:

threshLower = [0, 0, 90]
threshUpper = [80, 50, 255]

Using these thresholds for the thresholding algorithm gives the results shown in

Figure 4.1c. It is immediately obvious in Figure 4.1c that a larger proportion of MiRo’s

body has been thresholded when compared against Figure 4.1b. Similarly, the average

number of pixels successfully thresholded is now 3,573 – a 17% increase upon the

original threshold operation.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 24

(a) (b) (c) (d)

Figure 4.1: (a) A single image taken from MiRo’s left camera stream in the Gazebo simulator.
(b) Running the threshold algorithm with the original threshold limits set for each colour channel
and outputting into a greyscale image space. (c) Running the threshold algorithm with the
updated threshold limits found using the mode method for each colour channel and outputting
into a greyscale image space. Using the updated threshold limits using the mode method gives a
17% increase in the number of pixels successfully thresholded. (d) Showing the position of the
centroid.

Figure 4.2: Histogram of the blue channel intensity values for Figure 4.1a. Notice the large
spike at approx. 180, indicating most of MiRo’s blue body has a blue intensity value of ≈180.
The same can be done for the red and green colour channels to determine thresholds to filter out
the unwanted background.

Finally, following successful completion of the thresholding operation, the centroid

position, (Cx,Cy), is found via the first order moments:

Cx =
M10

M00
, Cy =

M01

M00
(4.1)

where, Mi j = ∑x ∑y xiy jI(x,y)

Given each thresholded pixel is set to a greyscale intensity of 255, the total number

of successfully thresholded pixels can be found by taking M00/255, where M00 is simply

the total sum of the intensity values for the thresholded area.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 25

4.2 Algorithm 1 – Adaptive Thresholding, Histograms

and the Perceptron

4.2.1 Real-world Setting

Note that the above threshold approach is useful for testing the controller (Chapter 5)

in a highly controlled environment, as one does not need to worry about false-negative

detections. In a real-world setting however this cannot be guaranteed, and so the fol-

lowing algorithm developed here is intended to be used in real-world settings. The

algorithm employs adaptive thresholding, histograms and a perceptron ANN for more

robust detection.

Detection in a real-world setting is certainly nontrivial. There can of course be

many objects that are of the same or similar colour as MiRo, and thus with a singular

threshold could give many false-positive detections. Further, lighting effects, shadows

and MiRo’s LED’s can give false-negative results through missed detection.

A single view of TMiRo under a more controlled scenario as shown in Figure 4.3

proves relatively straightforward to threshold. Notice that the image has been converted

into greyscale before applying the threshold. This was done using the following rule

for each pixel, [I], with 8-bit RGB colour channels (OpenCV, 2015a):

Grey[I] = 0.299R[I]+0.587G[I]+0.114B[I] (4.2)

The pixel intensity threshold limits were then chosen as 180 for the lower limit and 255

for the upper limit. Whilst in Figure 4.3 the thresholding is largely successful under

the semi-controlled environment, when applying the same thresholding limits to the

images in Figure 4.4 there appears too many false-positive detection zones as seen in

Figure 4.5.

To overcome this issue, a more robust MiRo detector is needed – the following

sections aim to build on the above development in order to increase its robustness.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 26

(a) (b) (c)

Figure 4.3: (a) Original image of TMiRo. (b) A greyscale image of (a). (c) Applying threshold-
ing limits of 180 and 255 successfully detects TMiRo, although not perfectly. Notice specifically
the shadow effect on MiRo’s face that prevents detection.

Figure 4.4: Stereo images of a TMiRo as viewed from MiRo

Figure 4.5: Thresholding of the stereo images of Figure 4.4 using the threshold limits of 180
and 255 as in Figure 4.3. Notice there are far too many false-positive detection zones, which is
not desirable for extracting TMiRo from the scene.

4.2.2 Correlations in Histograms

The inspiration for this approach came from the work conducted by Otsu (1979), in

which the histograms of greyscale images were used as probability density functions

which could be used to predict the likelihood of a pixel belonging to a particular object.

It was thought that perhaps through acquiring the greyscale histograms of many images

of MiRo, there should be some consistencies or correlations in the histograms – for

CHAPTER 4. BUILDING A "MIRO DETECTOR" 27

instance, MiRo’s body is mostly white, but also has a grey coloured underbelly and ears

– and that these consistencies could be exploited in some way.

To test this hypothesis, 48 images of MiRo were taken using MiRo’s own cameras

for best accuracy, and under varying scales, orientations, environments and lighting

conditions (MiRo was cropped in each image to extract it from the scene). These would

later form the positive training images for use in the perceptron (Section 4.2.3). Each

image was then converted to greyscale using Equation 4.2, and the histograms for each

image were computed (256 bins used for each of the 8-bit pixel intensities ranging from

0-255) and then normalised. See Figure 4.6 for the histograms of all 48 images. Notice

the cluster of spikes at intensity ranges 120-170, and 180-255. It is speculated that these

should be the image background in the first instance, and MiRo’s white body/head in

the second.

Taking the correlation matrix for the dataset, given as,

c = Xp
>Xp (4.3)

where Xp is the positive image dataset with dimensions 48x256 (the normalised

histograms for each training image). It then becomes clearer that there does indeed

exist some correlations in the data, as shown in Figure 4.7. The correlation matrix

highlights other areas of correlation that are not clear from the histograms in Figure

4.6, such as those at the intensities close to 63 – a sensible assumption being that this

could be MiRo’s grey ears/underbelly.

Subsequently, it was deemed justified that these correlations could be exploited in

some way. The next section discusses how this was achieved using the perceptron

artificial neural network.

4.2.3 Perceptron

Rosenblatt’s perceptron (Rosenblatt, 1962) is one of the earliest artificial neural net-

works, and certainly one of the simplest. Given the objective for the MiRo detector

is to simply detect only MiRo, one can term the problem as having to design a robust

binary detector – either an object is a MiRo or it isn’t. The perceptron is therefore

chosen as it is well suited as a binary classifier. The perceptron algorithm for training

CHAPTER 4. BUILDING A "MIRO DETECTOR" 28

Figure 4.6: Normalised histogram of the pixel intensity values for all 48 MiRo training im-
ages. Notice the two spike clusters, one approximately between intensities 120 to 170, the
other between 180 and 255. It is speculated that these regions are the background and MiRo’s
body/head, respectively.

Figure 4.7: Correlation matrix for the positive training images in the form of a heat map. Red
indicates low correlation, whilst green indicates highest correlations. Notice the large correla-
tions around the midpoint and the lower right corner. These intensities are close to 136 and 250
respectively, which agrees with the histogram plots above. Further areas of correlation are high-
lighted here, such as at intensities close to 63, which could justifiably be argued to be MiRo’s
grey ears/underbelly.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 29

Perceptron algorithm
1. Load the training histogram data, (x1,d1), ... , (xn,dn), where xi is a 256x1 vector

of the greyscale histogram data, and di = 1,0 for positive and negative images
respectively.

2. Initialise the weight vector, w, as random floating point decimals ranging from 0
to 1: wi = rand(1)

3. Normalise the weights: wi→ wi√
wTw

4. Train the network an arbitrary number of times:

(a) Choose at random an image histogram, xi

(b) Compute the output as: y = xT
i w

(c) Update the weights as: w→ w+η(di− y)xi

5. The classifier is computed as: h(x) =

{
1, if y≥ β

0, otherwise

Figure 4.8: The perceptron algorithm for training a binary classifier. Notice that the inputs to
the neural network are the histogram data for the training images.

the binary classifier is shown in Figure 4.8. The full python script for the algorithm

implementation is given in Appendix A.1.

Training the Perceptron ANN

In total there were 48 positive training images and 786 negative training images – 50 of

the negatives were captured from the lab environment in which MiRo mostly operates,

the rest were random images taken from the author’s personal photo library. In order to

properly train and then validate, 4 images were removed from the positive training set

and 4 from the negatives, which were later used for validation purposes.

All appropriate formulas required for training the perceptron are given in Figure 4.8.

Note that usually a bias is included in the perceptron algorithm, and then the decision

boundary is set to 0. In this instance, there is no bias, but rather the decision boundary

is set to a non-zero value β .

Optimisation

The learning rate was first optimised to give the quickest rate of convergence. η was

varied from 0.01 to 100 in powers of 10, and the rate of convergence for each plotted

vs number of iterations – see Figure 4.9. A learning rate of η = 10 was found to be the

most acceptable value, as it gave quickest convergence without exploding the weights.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 30

Figure 4.9: The results of varying η and its effects on convergence of the perceptron. β = 0.5.
It was deemed that η = 10 gave the most efficient learning. One order of magnitude above this
results in weights that explode as seen with η = 100.

Figure 4.10: The results of varying β and its effects on classifying. η = 10.
The optimal value for β was found to be 0.5 as it gave the highest rate of correctly classified
images.

It was then necessary to select a suitable decision boundary, β , that would give the

most accurate classification. β was varied from 0 to 1 in increments of 0.1. The results

are as given in Figure 4.10. Setting β = 0.5 gave the largest proportion of correctly

classified images. Thus, the optimum values for the algorithm can be summarised as

CHAPTER 4. BUILDING A "MIRO DETECTOR" 31

being η = 10 and β = 0.5. Note that the ‘proportion correctly classified’, plotted against

the number of training iterations, is computed using the exponential smoothing function

given as,

et = αHt +(1−α)et−1 (4.4)

with e−1 = 0.5, α = 10−4 for large smoothing, and Ht = 1,0 if the classifier cor-

rectly or incorrectly classified, respectively.

Validation and Summary

In order to validate the efficacy of the algorithm, it was necessary to remove some

images from the training set and use them for validation subsequent to the training

phase. 4 images were removed at random from the positive images and 4 also from

the negative. Running the algorithm 100 times (i.e. removing at random the validation

sets on each run, and resetting the weights for each run), the algorithm managed to

achieve an average rate of 90.1% correct classification with a standard deviation of +/-

9.2%; 5.4% were incorrectly classified as false-negatives, whilst 4.5% were incorrectly

classified as false-positives.

Though not perfect, having rates that are better than chance adds valuable informa-

tion that can be used alongside other vision operations. Furthermore, these results are

for images in which MiRo was placed in uncontrolled and variable environments, light-

ing conditions, scales and orientations. As such, the results are more than satisfactory.

It is important to note here that the images of MiRo were cropped for the purposes

of training. Thus, in order for the network to work effectively with MiRo, it is necessary

to build another algorithm that can efficiently locate regions of interest (ROI) that can

then be used with the network developed above. The development of a ROI algorithm

is given in the next section.

4.2.4 Region of Interest (ROI)

To save on computation and to aid in extracting meaningful histograms, it is desired

that an image be reduced to one or a few regions of interest that has some chance of

being TMiRo, before further processing is applied to the image.

Now it shall be assumed that in any given scene, if TMiRo exists within the scene, it

CHAPTER 4. BUILDING A "MIRO DETECTOR" 32

should be one of the lightest regions in the image. Rather than using a global threshold

value, it could be more beneficial to use an adaptive threshold, based on the mean

and standard deviation of the pixel intensities in the scene. A technique utilising this

approach is known as adaptive binarization, and was successfully applied by Sauvola

and Pietikäinen (2000) to overcome image noise, illumination and resolution changes.

They used the following formula for determining a threshold value,

t(x,y) = m(x,y) ·
[

1+ k
(

σ(x,y)
R
−1
)]

(4.5)

where m(x,y) is the mean for a local pixel centred in a given window, σ(x,y) is the

standard deviation for the same pixel in the window, R = 128 for an 8-bit greyscale

image, and k ranges from 0.3 to 0.5.

The problem with the approach above, as shown by Najafi and Salehi (2016), is

that computing the mean and standard deviation for every pixel in an image is very

computationally expensive. Najafi’s approach is to use a stochastic implementation of

Sauvola’s algorithm in order to speed up computation. Another problem with the above

is that it places the constraint of t(x,y)≤ m(x,y) for k ≥ 0. Rather, for this application

it is desired that the threshold should be above the mean: t(x,y) ≥ m(x,y) given the

assumption about MiRo’s light body.

The approach proposed here then is to set a threshold for an entire image to save on

computation, and to modify Equation 4.5 to give a threshold value above the mean. As

such, a threshold is set for each pixel using the following,

t(x,y) = m(img) ·
[

1− k
(

σ(img)
R

−1
)]

(4.6)

which is almost identical to (4.5) except that the threshold for each pixel is given by

the mean and standard deviation of the whole image, rather than for windows centred

on the pixel, and, more crucially, the +ve sign is swapped for a −ve sign to satisfy the

condition t(x,y)≥ m(x,y) for k ≥ 0. Note that if t(x,y)> 254, then the threshold is set

to t(x,y) = 254.

Figures 4.11a and 4.12a displays the result of applying the threshold given by Equa-

tion 4.6 with k = 2 on the left image in Figure 4.4 (converted to greyscale using Equa-

tion 4.2). But further, to test its capability under extreme lighting conditions, Figure

CHAPTER 4. BUILDING A "MIRO DETECTOR" 33

4.11b has all pixel intensities reduced by 80, with its thresholded image shown in Fig-

ure 4.12b, whilst Figure 4.11c has all pixels increased by 50 with its thresholded image

shown in 4.12c, both to simulate reduced lighting levels and increased lighting levels,

respectively. Notice the thresholding is consistent across all three light levels, with

only small differences. When using the threshold values used in Figure 4.5, the re-

duced lighting levels of Figure 4.11b returns a blank image. Therefore, the adaptive

thresholding technique applied above proves to be capable of handling varying lighting

conditions. Finally, all three thresholded images perform more adequately than shown

in Figure 4.5, with less false-positive regions.

The final step is simply to mark those regions of high density as the regions of

interest using OpenCV’s contours function (see OpenCV (2015b) documentation). Per-

forming the above on Figure 4.4 gives satisfactory results as shown in Figure 4.13.

Finally, note that the ROI in Figure 4.13 doesn’t take into account the whole of

MiRo’s body. Therefore, a (1.05w× 1.8w) window size1 is taken, with the new win-

dow’s centroid is moved to the top of the original ROI. Then the window size is in-

creased by 10% in 4 steps. The classifier can be computed for each window increase,

and stopped when either MiRo is detected or 4 window size increase steps have passed.

1Here, w is the width of the ROI. So a ROI with dimensions 80×75 would be increased to 84×144.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 34

(a) (b) (c)

Figure 4.11: (a) Original image of TMiRo converted to greyscale. (b) Simulated reduced light-
ing of (a) by reducing all pixel intensities by 80. (c) Simulated increased lighting of (a) by
increasing all pixel intensities by 50.

(a) (b) (c)

Figure 4.12: (a), (b) and (c) are all the thresholded images of their equivalent greyscale images
above, using the modification of Sauvoli’s formula, (4.6), for determining the thresholds. Notice
there are less false-positive regions in all images compared to Figure 4.5, and that there is some
consistency across each of the images, displaying a capability to cope with varying lighting.

Figure 4.13: The results of running the region of interest algorithm on the stereo images in
Figure 4.4. Following this will be the task of applying the histograms for each ROI

CHAPTER 4. BUILDING A "MIRO DETECTOR" 35

4.3 Algorithm 2 – SURF with Bayesian Inference

Speeded-Up Robust Features (SURF), developed by Bay, Tuytelaars, and Van Gool

(2006), is a detector-descriptor algorithm. Its detector uses the Hessian matrix on an in-

tegral image (see below) which saves significantly on computation time, and therefore

is termed the ‘Fast-Hessian’ detector by the authors. The descriptor describes the dis-

tribution of Haar-wavelet responses for a given interest point region. Finally, using the

sign of the Laplacian, the authors presented a novel indexing step in order to increase

matching speed of features and robustness of the descriptor (Bay, Tuytelaars, and Van

Gool, 2006). However, feature matching shall be exchanged for a Bayesian estimator

in this application for estimating posterior probabilities on TMiRo existing in an image.

4.3.1 SURF Detector

Integral Images

The integral image approach was first introduced by Viola and Jones (2001) in their

boosted cascading scheme. The integral image at some location, (x,y), is computed as

a sum of the pixels to the left and above point (x,y), and is given by,

ii(x,y) =
x′≤x

∑
x′=0

y′≤y

∑
y′=0

I(x′,y′) (4.7)

Once the integral image is computed, it is simple to compute the integrals at any

image point by performing only 4 additions, thus being computationally fast (see Davies

(2012, p.174-176)).

Hessian Matrix

Let a pixel within a window of an image have the location X = (x,y) and the image

space be at some scale σ . Then the Hessian matrix for this location is given as,

H(X ,σ) =

Lxx(X ,σ) Lxy(X ,σ)

Lyx(X ,σ) Lyy(X ,σ)

 (4.8)

CHAPTER 4. BUILDING A "MIRO DETECTOR" 36

(a) (b)

Figure 4.14: The approximation of the Gaussian second order derivative in the x-direction, Dxx

(a), and xy-direction, Dxy (b), for a 9x9 box filter. To generalise, the same can be scaled for nxn
= N box filter sizes.

where Lxy(X ,σ) is the convolution of the second order derivative of the Gaussian, G(σ),

with the pixel intensity, I(X), given as (similarly too for Lxx(X ,σ), etc.),

Lxy(X ,σ) =
∂ 2

∂x∂y
G(σ)∗ I(X) (4.9)

with G(σ) being the Gaussian function,

G(σ) =
1

2πσ2 exp
(
−x2 + y2

2σ2

)
(4.10)

The Gaussian second order derivatives can be approximated further by letting Lxx(X ,σ)≈

Dxx(X ,σ) and noting that,

Dxx(X ,σ) =
N

∑
i=1

gi ∗ai (4.11)

where N is the number of pixels in a window, g is the approximated Gaussian weight

and a is the summation of pixel intensities in the region. Figure 4.14 shows the ap-

proximated second order Gaussian partial derivatives for xx and xy. g is given by the

weights, ranging from -2 to 1, and a is the value of the summed intensities for each of

the shaded regions. Note how the integral image method described above is used to full

effect in the approximation of the Hessian, where summed regions of the image, i.e. a,

can be found efficiently using the integral image method.

The approximated Hessian determinant can then be given as,

det (Happrox) = DxxDyy− (wDxy)
2 (4.12)

CHAPTER 4. BUILDING A "MIRO DETECTOR" 37

in which w is approximated using the following,

w≈
||Lxy(σ)||F ||Dxx(n)||F
||Lxx(σ)||F ||Dxy(n)||F

(4.13)

where n is the size of the box filter used in the approximation of the second order

Gaussian, and || · ||F is the Frobenius norm operator. Letting σ = 1.2 and n = 9, then

(4.13) results in w≈ 0.9, giving for (4.12)2,

det (Happrox) = DxxDyy− (0.9Dxy)
2 (4.14)

The weight term is necessary to balance the given weights in Figure 4.14 with the

determinant of the actual Hessian matrix in Equation 4.8.

Figure 4.15: Inter-
est points from the
SURF detector

The final point to mention is that of scaling. In Bay’s paper, the

scale, denoted by σ , is set to σ = 1.2 for a 9x9 box size. As the box

size increases to 15x15, 21x21, 27x27, ..., nxn etc., then the scale

factor increases according to σ = n
9×1.2. I.e., for a box size 27x27,

σ = 3× 1.2 = 3.6 = s. (4.13) then remains constant throughout.

σ = s is set since s is used later in determining window sizes and

Gaussian parameters in the SURF descriptor.

Figure 4.15 displays the results of running the Fast-Hessian de-

tector with a threshold of 400 for the Hessian determinant. There

are 23 interest points detected in total, particularly in regions such as the tail, collar and

ears.

4.3.2 SURF Descriptor

Haar-wavelet responses are used in the descriptor algorithm of SURF both for assign-

ing orientation to achieve rotation invariance, and for building the resulting descriptor.

However, many applications don’t require rotational invariance in situations where the

camera remains horizontal (Bay, Tuytelaars, and Van Gool, 2006). For simplicity then,

it is assumed MiRo’s head will not rotate about the yaw and pitch axis, and thus the ori-

entation assignment section of the SURF descriptor is excluded here. In effect, the im-

plementation of SURF in this context is actually the implementation of Upright SURF
2For completeness, an example for calculating (4.13) is given in Appendix A.2.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 38

(a) (b)

Figure 4.16: Haar-wavelet responses in the x-direction (a) and y-direction (b). Again, using the
integral approach speeds up the summation of the areas in the box, and in taking the differences
of the summations.

(U-SURF).

Wavelet transforms show to be in some cases more useful in capturing important

information from an image than the Fourier transform, as wavelet transforms offer tem-

poral information as well as frequency responses. A detailed discussion on the theory

and methods behind wavelet transformations with particular attention to digital image

processing can be found in (Gonzalez and Woods, 2010). The Haar-wavelet types used

in SURF are simple differences between the sum of pixel intensities in a boxed region

– see Figure 4.16. Its simplicity, as with the Gaussian approximations in Figure 4.14,

make the algorithm computationally inexpensive.

The task is first to build a boxed window of size 20s around the centre of an interest

point taken from the detection stage described above. The window is then split into 16

equally sized subregions. For each subregion, the Haar-wavelet responses are computed

at 25 equally spaced regions. The Haar-wavelet response in the x direction is given as dx,

and in y direction dy. Summing each Haar-wavelet response for each of the 25 regions

in the original subregion then gives the initial feature descriptor for the subregion,

vi =
[
∑dx ∑dy ∑ |dx| ∑ |dy|

]T

i
(4.15)

Notice in (4.15) that the feature vector also includes the absolute sums of the responses

too.3

Performing the above for all 16 subregions gives the overall feature vector4, having

3Consider a region that has a striped vertical pattern. ∑dx would equal 0 in such a region. But ∑ |dx|
would produce a positive value. Hence, the absolute values offer valuable information that the standard
summations miss. See (Bay, Tuytelaars, and Van Gool, 2006).

4Note that feature vector and feature descriptor terms are used interchangeably in this section.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 39

size 64×1, for that interest point,

v =
[
vT

1 · · · vT
i · · · vT

16

]T
(4.16)

which can then be computed for each interest point in an image.

This then completes the description of the SURF algorithm. However, having the

feature descriptors is not final in object recognition; a further necessity is to be able

to use those feature descriptors in additional processes, such as feature matching (as

performed by Bay, Tuytelaars, and Van Gool (2006)). But here, we opt instead for the

application of Bayes’ theorem in predicting the probability of finding a set of features

belonging to MiRo.

4.3.3 An Application of Bayes’ Theorem in "MiRo-Detection"

Given an interest point in an image, the probability of that interest point belonging to a

certain class of object, Hi, given the feature descriptor associated with the interest point,

v, can be given as,

p(Hi|v) =
p(v|Hi)p(Hi)

∑ j p(v|H j)p(H j)
(4.17)

Hi in this application takes on two values only (i.e. a binary classifier), where H0

represents a non-MiRo class, and HMiro represents a MiRo class. Further, it is sensible

only to consider the probability of a feature descriptor belonging to a MiRo, then (4.17)

can be re-written as,

p(HMiro|v) =
p(v|HMiro)p(HMiro)

p(v|H0)p(H0)+ p(v|HMiro)p(HMiro)
(4.18)

Noticing that p(H0) = 1− p(HMiro), and substituting into (4.18),

p(HMiro|v) =
p(v|HMiro)p(HMiro)

p(v|H0)(1− p(HMiro))+ p(v|HMiro)p(HMiro)
(4.19)

gives the final form of the posterior probability for a single feature vector, dependent

only on the likelihoods and the prior probabilities. The challenge is then in estimating

these values.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 40

Estimating the likelihoods – p(v|HMiro) and p(v|H0)

Commencing first with the estimation of the likelihood p(v|HMiro). For this, we turn

once again to the 48 positive training images used in the perceptron and proceed by

extracting the feature descriptors from all 48 training images. A common approach

taken in feature matching is to use the Mahalanobis distance for measuring the sim-

ilarity between two feature vectors (Baumberg, 2000). Setting the covariance matrix

in the definition for the Mahalanobis distance as an identity matrix results simply in it

computing the Euclidean distance. p(v|HMiro) could then estimated by comparing the

Euclidean distance between the feature in question, v, and each of the stored feature

vectors extracted from the stored positive training images. The number of training im-

ages containing a feature vector with high similarity (where similarity is measured by

setting a Euclidean distance threshold) to the query feature vector as a ratio to the total

number of images is then the estimated value of p(v|HMiro). To be more succinct, the

following set of operations are performed:

1. The Euclidean distance between query feature vector, v, and each stored feature

vector, vk, in a training image K is computed as

d(v,vk) =
√
(v−vk)T (v−vk) (4.20)

2. The smallest d(v,vk) for image K is then stored as d(v,vk)min

3. If d(v,vk)min < thresh, then: count→ count +1

4. Steps 1-3 are repeated for all stored training images

5. p(v|HMiro) is then estimated as,

p(v|HMiro)≈
count

no. trainingimages
(4.21)

Note that the above 5-step procedure can be used also for estimating p(v|H0), sim-

ply by substituting the stored feature vectors of the positive training images in step 1 for

the feature vectors of the negative training images, with one important difference: due

to the negative images having exceedingly higher resolution than the positive images,

CHAPTER 4. BUILDING A "MIRO DETECTOR" 41

they also contain a much larger number of feature vectors (exceeding 1000 feature vec-

tors vs less than 20 for a typical positive image of MiRo). As such, the possibilities of

running into one feature vector that is similar to a query feature vector is much higher.

To avoid this, only the first 50 feature vectors for a negative image is therefore used.5

Further, for speedier implementation, steps 2 and 3 can be performed simultane-

ously by computing the Euclidean distance before comparing against the threshold

value for each feature in turn, and stopping if a feature passes the threshold.

Setting the Euclidean distance threshold – thresh

It is necessary then to select the optimal value for thresh in order to classify most ac-

curately. For this, taking the same 48 positive training images and using 45 for train-

ing and 3 for validation, the SURF feature descriptors for the 45 training images are

computed and stored. The 5-step procedure outlined above is then performed for each

validation image. The goal is to maximise the proportion of feature descriptors having

p(v|HMiro) ≥ 0.5 – a feature descriptor that satisfies this condition is defined as being

correctly classified.6

But further, all 786 negative training images will be taken and the above 5-step

procedure is performed for all these images. The goal here is to minimise the number

of feature descriptors with p(v|HMiro)≥ 0.5 (or maximise the number of features having

p(v|HMiro)< 0.5).

For the positive images, the validation images are selected randomly and the process

is repeated 10 times for each value of thresh, where thresh is incremented from 0 to 1

in steps of 0.1 (so that the process is repeated 330 times in total), whereas the process

is only performed once for each negative image. Figure 4.17 displays the proportions

of correctly classified features for the positive and negative training images. Having

a threshold of close to 0.46 seems to give the greatest proportion of classified images

both for the positive and negative sets, both giving a rate of approximately 0.6 correctly

classified features.
5Consider also that upon actual implementation, the ROI filter would most likely be run first anyway,

reducing the image resolution.
6One should take note though that "correctly classified" is a slight misnomer, as there is no actual

classification taking place – it is set only so that an optimal value for the threshold can be found.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 42

Figure 4.17: Plot for number of correctly classified feature vectors vs threshold value when
using Bayes’ with SURF. Plotted also are the error bars indicating one standard deviation. The
negative images have small error bars due to the large number of images used vs positive images.
At thresh ≈ 0.46, the proportion of images given a likelihood of 0.5+ is close to 0.6 for both
positive and negative images (the crossover point), which indicates setting thresh = 0.46 to be
a justifiable value.

Incorporating a series of feature vectors, V

Note the above is computing the probability given one feature vector. Rather, it is more

desirable to obtain the probability of MiRo given all the feature vectors obtained in the

image, which shall be defined as p(HMiro|V). Then, if there are N independent feature

vectors in an image the following relation can be used,

p(V|HMiro) = p(v1|HMiro)p(v2|HMiro)...p(vN |HMiro) =
N

∏
i=1

p(vi|HMiro) (4.22)

which is replaced into Equation 4.19 to give the final form of the probability of an image

(or ROI) containing a MiRo given the feature descriptors in the image,

p(HMiro|V) =
∏i p(vi|HMiro)p(HMiro)

∏i p(vi|H0)(1− p(HMiro))+∏i p(vi|HMiro)p(HMiro)
(4.23)

The final requirement is then to estimate the prior probability, p(HMiro).

CHAPTER 4. BUILDING A "MIRO DETECTOR" 43

Estimating the prior – p(HMiro)

The prior probability offers interesting possibilities for shaping the behaviour of MiRo:

for instance, if we assume that MiRo is always guaranteed to be in a ROI and set

p(HMiro) = 1, then MiRo will follow any salient object that passes the ROI filter, as

(4.23) equates to 1. Setting p(HMiro) = 0 then has the opposite effect, and MiRo will

never follow any salient object it encounters. Thus, as the prior probability is increased,

MiRo becomes more willing to follow objects that pass its ROI filter.

For now though, the following assumption is going to be made for setting an initial

value to the prior: assume that there will always be at least one TMiRo in MiRo’s

proximity, and that if MiRo were to turn round 360o, a TMiRo would certainly be

somewhere within its field of view. Each of MiRo’s cameras covers a viewing angle of

90o, and hence the prior is set to p(HMiro) = 90/360 = 0.25.

Finalising the Procedure

Finally, performing the Bayesian procedure with the above parameters on the MiRo

in Figure 4.15 gives a posterior probability of 0.999998, almost certainty that MiRo is

contained in the image (performed by removing that image from the training set so as

not to influence the result). Compare this with the negative images in which only 7/700,

or 1%, had probabilities over 0.1, and only 4/700, or 0.6%, gave probabilities above

0.9, and the significance of a probability of 0.999998 therefore becomes clear. This

completes the development on the SURF with Bayesian estimation algorithm. A full

analysis of the algorithm with a comparison against the first algorithm is given in the

next section. The full Python source code for this algorithm is given in Appendix A.3.

4.4 Analysis

The SURF algorithm with Bayes’ estimation was compared against the histogram with

perceptron approach. The criteria for comparison were detection time and detection

accuracy. Detection time is split into two separate timings: the first is the time taken to

process an image in order to ready it for the classifying stage. In the first algorithm this

includes extracting the histogram, whilst for SURF this includes computing the feature

descriptors. The second time is completed for the timing of the classifier. Again, in the

CHAPTER 4. BUILDING A "MIRO DETECTOR" 44

Table 4.1: Comparison of the histogram/perceptron algorithm vs SURF with Bayes’ inference.
All times should be taken relative to one another.

Total time (ms) Correctly classified (%)
Algorithm (processing + classifying) (false-negatives / false-positives)

Histogram/perceptron 0.271 (0.146 + 0.125) 90.1 (5.4 / 4.5)
SURF with Bayes 84.729 (0.729 + 84.0) 87.8 (11.4 / 0.8)

first algorithm, this includes the computation time for the perceptron neural network

(a simple linear sum, no learning is conducted here), whereas for SURF this means

running the Bayesian estimator.

In each case, the same image was used for validating, by removing it from the

training set. Therefore, it is assumed that the ROI filter is run for each instance already

and is not included as part of the analysis. The results are given in Table 4.1.

For the reader’s interest, all positive training images are displayed in Appendix A.4.

One may notice the diversity of TMiRo orientations, scales, backgrounds and environ-

ments that were necessary to properly assess the robustness of each algorithm.

4.5 Discussion

Starting with the results in the analysis above, it is clear which of the two algorithms

offers the most time efficient solution, with the histogram/perceptron performing 313

times faster than SURF. However, there is a noticeable difference in the proportion of

time spent for each in the processing and classifying stages. In the histogram approach,

the time spent between the processing stage and classifying was almost equal, having

a processing:classifying ratio of 1:0.86. For SURF with Bayes however, this ratio was

1:9,767; or, alternatively, 99% of the total time was spent classifying. This ‘bottle-

neck’ in the classifying stage can be explained simply due to the need for the algorithm

to compute a Euclidean distance between each feature in the query image, say 20+ fea-

tures for a typical MiRo image, and all other feature vectors in the training images. With

48 positive and 786 negative training images, each with say another 30 features each on

average, this equates to a total of 500,000+, 64-vector length dot product computations

each also needing to be square-rooted. Compare this with the perceptron approach,

which requires only a single 256-vector length dot product computation, and the differ-

ence is obvious. And this is in spite of applying the Naive Bayes’ classifier above (see

CHAPTER 4. BUILDING A "MIRO DETECTOR" 45

Davies (2012, pp.678-679)) – a method employed to reduce the amount of computation

necessary. Hence, for the Bayes’ approach, not only is it necessary to store all training

feature vectors thus consuming a lot of memory, but also the computations are labori-

ously long. The advantage of the perceptron is that learning can be done off-line, so the

only data that needs storing on MiRo are the network weights, and the computations

are an efficient, single dot product.

Perhaps then it would be beneficial to employ the simpler strategy adopted by the

authors of SURF (Bay, Tuytelaars, and Van Gool, 2006), using simple feature match-

ing. Whether this would indeed be a faster strategy is as yet unknown, but what can be

said is that the accuracy would likely suffer with feature matching, and feature match-

ing alone is not equivalent to object recognition. Bay achieved an average of 82.6%

recognition rates with standard SURF feature matching, whereas the Bayes’ estimator

could achieve 87.8% ‘MiRo estimation’ – of more use than simply matching features,

and with slightly higher recognition rates.

In terms of accuracies of MiRo recognition for both the algorithms, notice again

that the histogram approach slightly outperforms SURF. There are also noticeable dif-

ferences in the proportion of false-negatives and false-positives for each. In the his-

togram/perceptron algorithm, of the incorrectly classified images, 55% were false-

negatives whilst 45% were false-positives. Of the false-negatives, the images were

largely of the same type: they contained images of MiRo positioned far away from the

camera, in an overly cluttered scene, or were positioned side ways (see Figure 4.18).

Meanwhile, of the misclassified7 images with SURF almost all, 93%, were false-

negatives. Of these, there appeared a clear pattern, for 70% of the false-negatives were

images in which TMiRo was positioned sideways (this is despite there being only 23%

of the total number of training images having sideways views). The other 30% were

of TMiRo being positioned from behind. Interestingly, for all front facing images of

TMiRo the Bayes’ estimator worked with 100% accuracy, which could be explained

due to the efficient ability of the SURF algorithm to detect and describe facial features

– Viola and Jones (2001) work was initially developed for facial detection applications,

from which Bay, Tuytelaars, and Van Gool (2006) took the integral image approach for

use in SURF.
7Classified is declared as any significant positive probability, in this case p(HMiro|V)≥ 0.1.

CHAPTER 4. BUILDING A "MIRO DETECTOR" 46

(a) (b)
(c)

Figure 4.18: Typical examples of false-negatives in the histogram/perceptron algorithm. (a)
when TMiRo was positioned far away. (b) when TMiRo was positioned sideways. (c) when
TMiRo was positioned far away and was in a cluttered scene.

Sideways views of TMiRo therefore presented a challenge for both of the algorithms

above, and perhaps further work, whether an additional classifier for sideways views or

a separate algorithm altogether, is left open for additional consideration. It may be

that interesting collective phenomena emerge from this lapse in the algorithms when

implemented for a group of MiRos. This again is left open for further consideration.

To conclude this section on the development of MiRo’s vision algorithms, recall

from the project aims that one of the primary criteria for the controller was the abil-

ity to not just detect TMiRo, but to track TMiRo too. By determining at each camera

frame rate the position of TMiRo in the scene, then tracking is to a minor extent com-

pleted. However, a more rigorous approach to tracking may be desired, in that TMiRo’s

velocity be computed as well as position.

This should be considered as further work, and the initial steps have already been

documented in Section 3.2.2 with motion tracking. By applying a binary threshold,

such as the one developed in the ROI approach (Section 4.2.4), Equation 3.4 can be

used as an input to an advanced controller (compared to the controller in Chapter 5).

It is worth raising here the potential issues that could be encountered when deter-

mining motion of features of image points, and a critical one could be that of noise.

For exact positioning, the impact of noise is more negligible, so long as the noise isn’t

overwhelmingly large. For motion tracking however, consider the effects of noise on

a thresholded centroid. The centroid could rapidly move position depending on the

amount of pixels thresholded in the ROI algorithm for instance, and certainly physical

disturbances to the robot would cause large fluctuations in centroid velocities. It would

therefore be wise to employ some smoothing algorithms – a common time-varying filter

being the Kalman filter for instance (Wang et al., 2014).

Chapter 5

Control Law

5.1 Following Control Laws – Review

Developing a controller for a mobile robot can take on a number of forms, but fall usu-

ally into two main categories: one is the high precision kinematic modelling approach in

a feedback/state-space system – a classical control approach. The other is a biologically

inspired behaviour-based approach; an example being simplistic reactive controllers in

which actuator excitations are some monotonic function of sensor intensities readings.

This review aims to give an overview of the application of each in a mobile robotics set-

ting, highlighting the various differences and noting the advantages and disadvantages

for each approach.

5.1.1 Kinematic Modelling

Kinematic modelling in mobile robotics is usually performed even in behaviour-based

control mechanisms, for instance when determining the necessary voltage input to a

motor in order to achieve a desired angular velocity. Furthermore, having a kinematic

model of the MiRo allows a ‘closely-optimal’ solution to be found for a path planning

problem. As such, any behaviour-based controller developed later can then be com-

pared against the kinematic solution in order to analyse its effectiveness. Developing a

kinematic model for the MiRo therefore has a number of uses.1

1The dynamic model is arguably just as important. But in an attempt not to extend this section more
than is necessary, one can refer to (Wahde, 2016, p.21-28) for an in-depth analysis of the differentially
driven mobile robot’s dynamics.

47

CHAPTER 5. CONTROL LAW 48

The MiRo is a differentially driven robot with one caster wheel for support as shown

in Figure 5.1. The forward kinematics are solved for in order to give MiRo’s new x,y

and θ position in a global co-ordinate frame, and is found from the forward velocity, V ,

and angular velocity, ω , of MiRo’s body given as a function of the angular velocities of

MiRo’s wheels,

V =
(ωL +ωR)r

2
(5.1)

and,

ω =
(ωR−ωL)r

D
(5.2)

where ωL and ωR are the left and right wheel angular velocities (rad/s) respectively,

r (m) is the wheel radius (same for each), and D (m) is the track distance between the

two wheels. Velocities in x and y as a function of θ for the differentially driven robot in

a global coordinate reference frame can then be given as,

Vx(t) =V cosθ(t) (5.3)

Vy(t) =V sinθ(t) (5.4)

Then using ωLr = vL and ωRr = vR, and integrating (5.3) and (5.4) to give position, and

(5.2) to give rotation,

[∆x]t1t0 =
∫ t1

t0
Vx(t)dt =

∫ t1

t0

vL(t)+ vR(t)
2

cosθ(t)dt (5.5)

[∆y]t1t0 =
∫ t1

t0
Vy(t)dt =

∫ t1

t0

vL(t)+ vR(t)
2

sinθ(t)dt (5.6)

[∆θ]t1t0 =
∫ t1

t0
ω(t)dt =

∫ t1

t0

vR(t)− vL(t)
D

dt (5.7)

Notice that this system is coupled, as (5.5) and (5.6) are dependent on (5.7), and that it

is nonlinear due to the trigonometric terms, thus having a classical state-space system

without linearisation is not possible. These results are due to the constraints that the

wheels impose on the movement of the robot – see above that the number of degrees of

freedom (DOF) the robot has is 3 (in x,y and θ), yet the number of differential degrees

of freedom (DDOF) is only 2, as it can only manipulate its forward/reverse velocity,

and its rotational velocity. As such, if DOF > DDOF, then the robot is said to have

CHAPTER 5. CONTROL LAW 49

nonholomonic kinematic constraints (Siegwart and Nourbakhsh, 2004, p.75-77).

But the interest is in creating a controller that can position MiRo in any pose de-

sired of it, and particularly that the controller be in a closed-loop feedback set-up for in-

creased optimality (though not necessarily optimal). A number of solutions are offered

within literature, see for instance (Campion, Bastin, and D’Andrea-Novel, 1996; Wit

and Sordalen, 1993). But the one presented here is similar to Siegwart and Nourbakhsh

(2004, p.82-88), with the only difference here being that the robot’s local co-ordinate

frame is not considered.

In Figure 5.1, the goal is to have MiRo move from its initial position at [x0,y0,θ0],

to a goal configuration [xG,yG,θG]. The ‘error’ is equal to e(t) = [∆x,∆y,∆θ], and thus

the goal is achieved if e = 0. Then the aim is to design a controller, K, that drives the

error towards zero: lim
t→∞

e(t) = 0.

MiRo’s kinematic model is as defined in Figure 5.1, with ρ being the distance be-

tween MiRo’s wheels centre and the goal position; α is the angle between MiRo’s

forward velocity vector and ρ; and β is the angle between the vector that is in the di-

rection of ρ , and the goal position – these define the polar coordinates. ∆x, ∆y and θ

are transformed into the polar coordinates by,

ρ =
√

∆x2 +∆y2 (5.8)

α =−θ + arctan
∆y
∆x

(5.9)

β =−θ −α (5.10)

which can then be expressed in terms of their derivatives in matrix form, in which the

linear and rotational velocities of the robot are considered the system’s inputs (Ferreira

et al., 2008), 
ρ̇

α̇

β̇

=


−cosα 0

sinα

ρ
−1

− sinα

ρ
0


V

ω

 (5.11)

If a linear control law of the form,

V

ω

= K


ρ

α

β

=

kρ 0 0

0 kα kβ




ρ

α

β

 (5.12)

CHAPTER 5. CONTROL LAW 50

Figure 5.1: The kinematic model of the MiRo. The aim is to develop a controller that can take
MiRo from the START position to the GOAL configuration, by driving the error terms ∆x, ∆y
and ∆θ (in this instance ∆θ = θ) to zero. MiRo’s inputs are V and ω , which are determined by
Equation 5.12 for this control law.

is assumed, then substituting (5.12) into (5.11) gives the final form of the closed-loop

controlled system, 
ρ̇

α̇

β̇

=


−kρρ cosα

kρ sinα− kαα− kβ β

−kρ sinα

 (5.13)

with the criterion that,

kρ > 0; kβ < 0; kα − kρ > 0 (5.14)

to retain stability, determined from the eigenvalues of the controlled dynamics matrix

for the linearised system (see (Siegwart and Nourbakhsh, 2004, p.86-89) for full proof).

The above classical control method gives good performance and has proven effec-

tive for many robotic tasks. But this approach can be arduous, and makes assumptions

that cannot generally be made, such as perfect knowledge of distance/orientation and

non-slip conditions. Furthermore, it does not consider the dynamics of the robot which

can be yet another arduous task to develop. As such, a behaviour-based approach will

next be introduced, which does not require as complex mathematics as given above,

simplifying greatly the task of controller development.

CHAPTER 5. CONTROL LAW 51

5.1.2 Behaviour-based Control

MiRo does not have any global positioning system (GPS), or built in internal maps,

and as such MiRo’s ability to follow a TMiRo can only be accomplished through its

own local sensors. The restrictions go further for this project though, in that the con-

troller should use only information from the cameras. Thus, unless a robust distance

and orientation estimator can be implemented, the classical controller method above

would not be a suitable option.2 This point and similar other issues in classical control

is expressed by Brooks (1999), perhaps one of the originators of the behaviour-based

approach to robotics control. There are a number of advantages with a behaviour-based

robot over the classically-controlled robot. Firstly, a behaviour-based system that is

biologically inspired can be robust, repeatable and adaptive, in the same way biolog-

ical systems are (Matarić, 1998). Secondly, algorithms are often simpler to develop

whilst retaining complex looking behaviours, as is exemplified with reactive controllers

or the Braitenberg vehicle (Braitenberg, 1984). Thirdly, behaviours are of a higher-

level description than the lower level processes, enabling more general levels of control

(Matarić, 2001). Fourthly, whilst being used to develop controllers for robotic systems,

behaviour-based robotics also aims to help in the understanding of biological systems

too (Matarić, 1998). And lastly, applying the behaviour-based approach remains true

to the principle of MiRo being biomimetic, given that behaviour-based control has a

closer resemblance to biological control strategies.

Behaviour-based robotics shares similar characteristics to finite-state machines, in

that the robot exhibits high-level states (such as ‘collision avoidance’, ‘follow mate’,

etc.), but is noticeably different in that behaviours, rather than states, have some in-

teraction amongst each other so that multiple behaviours can be active simultaneously

(Matarić, 1998). This creates interesting dynamics that are exploited to create intelli-

gent and stable robotic systems (Brooks, 1991).

This review on behaviour-based control is divided into two sections: reactive con-

trollers and adaptive behaviour. The principles of each are briefly introduced, and then

notable applications of each from within the literature are mentioned.

2Despite human’s ability to see with dual vision, distance is still not perfectly inferred as exemplified
with the "moon illusion" (Weidner et al., 2014). Further, orientation of a "target human" can actually
affect the perceived distance of the target human (Ejung et al., 2016).

CHAPTER 5. CONTROL LAW 52

Reactive Controllers

The Braitenberg vehicle originated in a series of thought experiments conducted by the

psychologist Valentino Braitenberg (1984). In his work, Braitenberg introduced a num-

ber of vehicle types, each an extension of a previously developed Braitenberg vehicle.

The principle is rather simple, and involves nothing more than direct connections be-

tween external sensing equipment and a vehicle’s wheels. One sensor is connected to

one wheel, of which the sensors can sense anything: light, temperature, chemicals, etc.,

and the connections can be excitatory (larger sensor reading gives larger motor speeds),

inhibitory (larger sensor reading gives smaller motor speeds), linear, nonlinear, and can

include logic gates. With such controllers, one can imagine a wide range of complex

behaviours that the robot could exhibit.

The issue with Braitenberg’s vehicles in reality is that, as Ronald Arkin mentions,

they are “inflexible, custom machines and are not reprogrammable” Arkin (1998, p.11).

This is mostly true, but they can be programmable in a limited sense, in that the in-

put/output parameters coupling the sensors to the actuators could be updated, or "repro-

grammed" by changing a physical component (say resistance values in an amplifier).

But without a microprocessor, that is the limit to the adaptability of the Braitenberg

vehicle.

Hogg, Martin, and Resnick (1991) soon developed 12 Braitenberg type vehicles,

made from specially modified Lego bricks. One interesting development of theirs is an

Attractive and Repulsive pair of vehicles. Using lights and light sensors, the Repulsive

vehicle is attracted towards the Attractive vehicle. However, once the light sensor on

Attractive is switched to ‘on’ due to Repulsive being too close, Attractive then dashes

away until out of range of Repulsive. Repulsive later catches up with Attractive, and the

process repeats. Hence simple interactions can be achieved using nothing more than

lights, light sensors and thresholding devices.

A natural progression of the Braitenberg vehicle is towards reactive controllers in

general and the extension of reactive controllers particularly for mobile robots. Ex-

amples include Zhu et al. (2005) who combine reactive navigation control with a fuzzy

controller, or Tigli et al. (1993) who use reactive controllers in a MAS with a centralised

global control element to perform high-level reasoning. Both aim to take advantage of

the simplicity of the reactive controller, whilst also attempting to introduce more so-

CHAPTER 5. CONTROL LAW 53

phisticated planning or intelligence.

The problem of the non-adaptive nature of the Braitenberg vehicle was confronted

by Santamaría and Ram (1996), who were able to apply a learning approach to the

controllers via case-based reasoning and the application of reinforcement learning in a

robot navigation task. Thus, reactive controllers have proven to be suitable for adaptive

learning in order to cope with changing environments.

Adaptive Behaviour

Adaptive behaviour is the ability for an agent to adapt, or learn, over a period of time

in order to better its behaviours to achieve a specific outcome (Dorigo and Colombetti,

1998). Almost all learning approaches tend to fall in any one of the categories of super-

vised, reinforcement, or unsupervised learning (Alpaydin, 2010).

Adaptive behaviour can further be applied for a number of robotic control ap-

proaches, as it involves nothing more than an iterative updating of parameters, weights

or controller gains. For instance, in the classical control approach, the theory of Adap-

tive Control exists for the purpose of learning and adapting controller parameters in a

classical control setting (Narendra and Annaswamy, 1989).

Adaptive behaviour is widely used in neural networks, as demonstrated in Section

4.2.3, in which a neural network could be trained to "learn" to correctly classify MiRo in

an image. The credit often goes to Hebb (1949) for the introduction of a rule for synaptic

plasticity, and is certainly the basis on which much of the work on synaptic plasticity

is done today (Dayan and Abbot, 2001). And as discussed in the review of collective

behaviours, adaptive learning can be used in social robotics, using multi-bot systems

to learn a global optimal policy. A detailed discussion of the application of learning

in a behaviour-based multi-bot system is given by Matarić (2001),3 in which mobile

robots demonstrated the ability to learn from past behaviour choices, and optimise their

behaviour selections by avoiding the execution of those inefficient behaviour sequences.

A reinforcement learning technique was implemented along with something known as

shaping.

It was Dorigo and Colombetti (1998) who first introduced the term shaping in a

3Matarić also argues that the behaviour-based control is separated from reactive control. But often
the two can be used in conjunction, as demonstrated by He, Ren, and Kan (2010) in a behaviour-based
approach where each behaviour contained reactive controllers.

CHAPTER 5. CONTROL LAW 54

robotics setting, taking it from the field of psychology, in which behaviours can be grad-

ually altered over time to converge on a desired behavioural outcome. Their approach

was based upon reinforcement learning mechanisms, although they did not document

explicitly the algorithms used. They also argued that the work conducted at that time by

Arkin (1998), Brooks (1999) and others on behaviour-based robotics had not yet fully

realised the potentials of combining robotics with the behavioural sciences – mainly

due to the incapability in deciding what in a robot should be explicitly designed, and

what should be learned by the robot.

Reinforcement learning is clearly a promising approach to take, allowing the robot

to learn gradually overtime an optimal policy that will maximise its rewards without

having any input from an outside observer. As such there is no shortage of reinforce-

ment learning techniques applied in mobile robot applications (Bruske, Ahrns, and

Sommer, 1997; Fagg, Lotspeich, and Bekey, 1994; Altuntas et al., 2016).4

5.2 MiRo Control Law

A controller was developed based upon the techniques of reactive control discussed

above, and implemented with good effect within the Gazebo simulator. This section

documents the development, optimisation and analysis of the controller.

5.2.1 Development

Basic Following

The controller was intended to be designed to have low complexity, but that achieves

the basic aim of following behaviour. This was accomplished through the inspiration of

the Braitenberg vehicle and reactive controllers, with TMiRo’s position in each camera

coupled directly with the wheel speeds using some nonlinear laws and logic gates.

Firstly, for ease of use within the Gazebo simulator, TMiRo is detected using the

thresholding technique described in Section 4.1. Then by extracting the centroids from

each camera stream, an estimated centroid position in x, Cest
x , for the TMiRo in the

4See Appendix A.6 for a proposal of a MiRo controller which applies reinforcement learning in an
ANN.

CHAPTER 5. CONTROL LAW 55

Table 5.1: Logic table for the B parameter. A value of 1 for Ldet or Rdet indicates that TMiRo
has been detected in the left or right camera respectively, whilst 0 indicates TMiRo has not been
detected. If TMiRo is not detected in either camera, then TMiRo following behaviour is not
exhibited.

Ldet Rdet B
1 1 1
1 0 1
0 1 -1
0 0 N/A

scene could be computed as a function of the centroids from each camera:

Cest
x = (Cl

x−B
w
2
)+(Cr

x−
w
2
) =Cl

x +Cr
x−

w
2
(B+1) (5.15)

where Cest
x is the estimated x component of the centroid computed as functions of Cl

x

and Cr
x, which are the respective x components of the centroids in the left and right

camera streams.5 w is the camera width (320 for MiRo’s 320x240 camera resolution),

so that the (−w
2) terms act to centre the centroid around the midpoint of the image. The

B term is equal 1 if TMiRo is detected in either both cameras or only the left camera,

and equals −1 if TMiRo is only detected in the right camera or neither of the cameras.

Note that if TMiRo is not detected in a camera stream, it’s corresponding Cx is equal 0.

If TMiRo is detected in both camera streams, then there is no issue and B = 1.

If however TMiRo is detected only in the left camera, it is guaranteed that TMiRo’s

position in Cest
x should be negative (MiRo is obviously to the left of the scene’s centre),

but again, B = 1 ensures this is true since Cl
x is guaranteed to be < 0. Similarly, if MiRo

only appears in the right camera stream, setting B =−1 ensures MiRo’s Cest
x position is

positive since Cr
x is guaranteed to be > 0.

Just to illustrate the above more clearly, consider the following: as a point is moved

across the scene, from left to right, its Cest
x value would range from Cest

x =−320 (Cl
x = 0,

Cr
x = 0, B = 1 and hence (5.15) equates to −320) to Cest

x = 320 (Cl
x = 0, Cr

x = 320,

B =−1 and hence (5.15) equates to 320). The MiRo can be said to be looking directly

ahead at the point when Cest
x = 0, and thus from Equation 5.15, Cl

x+Cr
x =w, as expected.

The logic table for determining B is given in Table 5.1.

Letting now Cest
x = x to make its use as a variable more convenient, once the com-

5Cx,Cy in either camera stream has its axis origin at the bottom left of the image. So if the centroid
was in the centre position in a 320x240 image, it would be given as (Cx,Cy) = (160,120).

CHAPTER 5. CONTROL LAW 56

Figure 5.2: Plot of Equation 5.16, with wheel speeds as a function of the combined x value from
Equation 5.15. γ is set at 0.004, which ensures that the difference between the left and right
wheel does not change too dramatically, which would otherwise cause large overshoots.

bined x position for TMiRo is determined, MiRo’s left and right wheel speeds are com-

puted as a function of x in the following way, remembering x ranges from −320 to

320:

sl(x) =

smaxeγx, if x≤ 0

smax, otherwise

sr(x) =

smax, if x≤ 0

smaxe−γx, otherwise

(5.16)

where γ is a tuning parameter that determines the rate of decay of the wheel speed

from the maximum wheel speed, smax. This causes MiRo to move straight ahead if

x = 0, turns left with decreasing radius as x becomes more negative, and turns right

with decreasing radius as x becomes more positive. There is a situation where x is

undefined for when TMiRo is not detected in either camera. Under such circumstances,

MiRo reverts to another state, such as performing a random walk, going into demo

mode, or exhibiting any other pre-programmed behaviour. See Figure 5.15 for the plot

of Equation 5.16 when γ = 0.004.

The methodology applied above works well for simple following, and having a

tuning parameter allows further the option of optimising if necessary. However, the

controller itself still lacked the ability to stop when it got too close to TMiRo in order

to avoid colliding.

CHAPTER 5. CONTROL LAW 57

Collision Avoidance

Again, techniques similar to those proposed in the Braitenberg vehicle are applied,

namely that of a logic gate having some dynamics. The aim was to have MiRo’s velocity

slow as it closely approached TMiRo, and then to stop if it got too close. The solution

to this was to multiply the wheel speeds in Equation 5.16 by a minor modification of

the logistic function to give the final wheel speeds as follows,

Sl,r = H(n)sl,r (5.17)

in which H(n) is the modified logistic function, which gives outputs ranging from 1-0,

given as,

H(n) =
1

1+ ek(n−n0)
(5.18)

where n is equal to the number of successfully thresholded pixels in the image. One may

get a sense of the solution already if it is said that n0 is set to the number of thresholded

pixels that is deemed as TMiRo becoming ‘too close’. k then determines how quickly

MiRo alters its speed – too large and the result is MiRo dropping almost instantaneously

from max speed to zero speed, which clearly is not a desirable outcome when MiRo’s

dynamics are considered; too small and MiRo doesn’t change its speed quick enough

to avoid collision. This coupled with the controller described above then completes the

development process for the final controller.

5.2.2 Optimisation

It was then necessary to optimise the controller, by tuning the parameter γ in Equation

5.16 and the parameters k and n0 in Equation 5.18.

Optimising γ

For assessing how varying γ influences MiRo’s movements, MiRo was positioned at

an angle of 45o and a distance of 1.5m relative to a reference target – a blue cube (see

Figure 5.3 for the experimental setup). The controller was then implemented at this

starting position for a total of 10 trials, each with varying values of γ , ranging from

0.001 to 0.01.

CHAPTER 5. CONTROL LAW 58

Figure 5.3: MiRo’s starting position in the experimental setup for optimising γ . MiRo is posi-
tioned 1.5m away and at an angle of 45o from the target (blue box).

Then, the centroid position, Cest
x , is used to assess the controller’s effectiveness.

The desired value for Cest
x is 0, since at this position MiRo will be facing the target

directly, and as such its forward velocity will be maximum (Equation 5.16). The criteria

measured for finding most optimal γ were then determined as the following, where the

final settling value should be Cest
x = 0:

• Rise time, Tr: Time taken to reach 90% of final settling value

• Overshoot, OS: Maximum overshoot above settling value

• Settling time, Ts: Time for Cest
x to settle to within +/- 20

The results of the trials are plotted in Figure 5.4, with the rise time, overshoot and

settling times given in Table 5.2. It was found that a value of γ = 0.004 seems to be

most appropriate, as its rise time is quick enough (within 40% of the quickest rise time),

overshoot is reasonable (within 19% of the smallest OS) and has the shortest settling

time.

Table 5.2: Rise time, overshoot and settling time for different values of γ . Note that the other
parameters in Equation 5.18 have no effect on these results, as MiRo does not reach the object.

γ Tr (s) OS Ts (s)
0.001 > 6 0 > 6
0.002 3.20 37 > 6
0.003 1.80 38 4.4
0.004 1.32 44 2.5
0.005 1.16 54 3.5
0.006 1.16 63 > 6
0.007 1.10 80 > 6
0.008 0.95 85 > 6
0.009 0.98 89 > 6
0.01 0.95 113 > 6

CHAPTER 5. CONTROL LAW 59

Figure 5.4: Plot of centroid position (Equation 5.15) against time when varying γ in Equation
5.16. Only results for γ in steps of 0.002 is given to avoid having too many plots. Cest

x begins
at 300 due to MiRo’s starting position in Figure 5.3, before dropping as the controller computes
MiRo’s wheel velocities. The stepped changes are due to the difference in camera frame rates
(≈5fps) and the simulation rate (≈50fps)

Optimising k and n0

Optimising for k and n0 requires a little more consideration, and experimentation wasn’t

the most efficient method for the optimisation process. Instead, it is far more beneficial

to look directly at plots that Equation 5.18 give for various value of k and n0. Then

one could set a desired stopping distance, which is converted into a desired ‘pixel area’

Figure 5.5: Plot of Equation 5.18 with k = 0.0008 and n0 = 10,000. k was selected so that
saturation was reasonable (i.e. reaches 0 within good time) but without a having a steep curve.
n0 was then selected as 10,000 so that H reached 0 at the desired value of n = 15,000.)

CHAPTER 5. CONTROL LAW 60

Figure 5.6: MiRo’s stopping
distance behind TMiRo with
the optimised parameters.

(as MiRo approaches TMiRo, TMiRo’s ‘pixel area’ in-

creases). k is then selected to give a desired speed change

– 0.0008 gave an acceptable plot that saturated within a

reasonable time, and did not give too steep a curve. n0 is

then simply set so that Equation 5.18 saturates at 0 as n ap-

proached the desired value. For instance, with k = 0.0008,

and having a desired stopping distance with a pixel value

of n = 15,000, n0 could be set at approximately 10,000 so that H(n) reached 0 at close

to n = 15,000. See Figure 5.5 for the final plot with k = 0.0008 and n0 = 10,000. Ap-

plying the above parameters resulted with an effective controller that allowed MiRo to

stop at reasonable distances from TMiRo without large overshoots. See Section 5.2.4

for an analysis of the final controller.

5.2.3 Losing Track of TMiRo

Figure 5.7: A simple finite state machine.

Although the vision algorithms had good suc-

cess with the detection of TMiRo, at approx-

imately 90% accuracy for each, the 10% fail-

ure rate becomes significant when one consid-

ers the number of time steps – at 4fps cam-

era rate, then after 2.5 seconds MiRo may

lose track of TMiRo an average of once.

Rather than MiRo stopping or going into a

random walk immediately after losing track

of TMiRo, both of which may result in losing

sight of TMiRo altogether, a more sensible strategy would be to follow a simple finite

state machine type procedure as follows: Initially, when TMiRo is undetected, MiRo

performs a random walk or, alternatively, exhibits another preprogrammed behaviour.

Upon detecting TMiRo, MiRo commences with following TMiRo. If however TMiRo

was to become lost, MiRo would continue with its previous velocity profile in the hope

it may rediscover TMiRo’s position. If it is unsuccessful in its rediscovery after 12 time

steps (or 3s for a 4fps camera rate), then MiRo returns to a random walk / alternative

behaviour state. This process is summarised in Figure 5.7.

CHAPTER 5. CONTROL LAW 61

(a) (b) (c) (d)

Figure 5.8: Testing of the initial controller. The two images in the top right of each image are
the camera streams from MiRo. (a) Starting positions for MiRo (white) and TMiRo (blue).
(b) TMiRo begins moving in a circular, counter-clockwise path. MiRo’s controller is activated
manually. MiRo has detected TMiRo and is moving towards it. (c) MiRo stops before hitting
TMiRo’s side, and waits to follow in behind. (d) MiRo is now successfully following TMiRo.

5.2.4 Analysis

The Python source code implemented for the initial controller is given in Appendix

A.5. The controller performed reasonably well, allowing MiRo to successfully detect

TMiRo, and then to move towards TMiRo until reaching a stopping distance determined

by the collision avoidance method above. A typical example of the following behaviour

can be seen in Figure 5.8. MiRo generally remained approximately half a MiRo body

length behind TMiRo at all times.

Its computation time to perform the image processing is reasonable, with each run

through of the script giving an average run time of 6.82ms with standard deviation of

0.09ms (statistics computed from 10 normal runs). Given MiRo has a frame rate of

8fps with the 320x240 resolution, then there is plenty of time for the image processing

operations to complete: 6.82ms << 125ms (8fps = 0.008 frames/ms = 125 ms/frame).

Note however that this was conducted off-board the MiRo and within the simulator on

an Intel i7 4770K, 3.5GHz CPU. For comparison, MiRo’s P3 processor clocks at 1GHz.

There are of course some issues with the initial controller, in that the controller can-

not account for noise. This was more noticeable in experimental work, as for instance

sending a forward velocity often resulted in MiRo veering slightly to one side. This

problem is highlighted further in Chapter 6 and addressed in Chapter 7.

A final note on this controller is that it can, if necessary, be utilised with any number

of computer vision detection methods. So long as a method to predict point positions

in each camera and distance of TMiRo are available, there should be no problems with

adapting the parameters of the above controller to suit.

Chapter 6

Real-World Experimentation in MiRo

In order to display the effectiveness and feasibility of the optimised controller from

simulation into a real-world setting, a short experiment was performed with MiRo. A

small blue item was used for MiRo to detect (allowing for control over the environ-

ment), and then MiRo was positioned some distance away and at an angle from the

blue object – see Figure 6.1a for the experimental set-up. Upon implementation of the

main controller, MiRo showed a clear ability to generate the necessary velocities in or-

der to move towards the object. However, in reaching the object MiRo can be seen to

run past it, as the collision avoidance mechanism had not been calibrated for use with

the small object. MiRo did however remain at rest once the object was no longer in

MiRo’s field of view, indicating clearly MiRo’s movement was due to an "attraction" to

the blue object, and not due to other sources. The results for this experiment are given

in Figure 6.1. Under controlled scenarios such as these, MiRo successfully moved to-

wards the object 100% of the time with smooth trajectories and zero overshoot (barring

networking issues).

This suggests the controller works well when the conditions of the environment are

controlled. Possible issues in having MiRo follow another MiRo therefore would likely

not be due to problems with the controller, but would be a result of the vision algorithms

not performing effectively.

It may be noticeable in Figure 6.1 that MiRo doesn’t quite position itself head on

with the blue object, rather it is slightly to the right of it. This issue was not due to the

controller, but was caused by minor unwanted wheel-speed differentials that occurred

even when sending the same speeds to the wheels. Whilst minor, it is worth mentioning

62

CHAPTER 6. REAL-WORLD EXPERIMENTATION IN MIRO 63

(a) (b) (c) (d)

Figure 6.1: Running the controller on MiRo for following a blue object. (a) MiRo’s starting
position. (b) Shortly after implementing the controller, MiRo begins moving towards the blue
object. (c) MiRo reaches closes in on the blue object. (d) MiRo has ran past the blue object and
remains stationary as the object is no longer in its field of view.

(a) (b) (c) (d)

Figure 6.2: Running the controller on MiRo using the ROI threshold method. (a) MiRo’s starting
position. (b) Shortly after implementing the controller, MiRo begins moving towards a "distrac-
tion" on its left. (c) MiRo soon turns back towards TMiRo. (d) MiRo’s collision avoidance stops
MiRo close to 10cm behind TMiRo.

as these slight issues adds further emphasis for the need to develop a more adaptive

control strategy.

Following this success, the controller was then tested using the ROI threshold method

for attempting to follow another MiRo in the same environment, along with the colli-

sion avoidance mechanism. This worked with remarkable success as shown in Figure

6.2, with MiRo moving towards TMiRo, before stopping a short distance behind due

to the collision avoidance mechanism. MiRo does temporally become "distracted" by

other white objects to its left (Figure 6.2b), but overcomes these and returns to TMiRo.

Utilising the two vision algorithms should improve the robustness of the detection in

order to eliminate these "distractions". Again, it is important to note that testing of the

vision algorithms is separate from testing of the controller – the results and discussion

for testing of the vision algorithms were given in Sections 4.4 and 4.5.

Chapter 7

Discussion and Conclusion

7.1 Vision Algorithms and the Controller

Both vision algorithms are designed such that they both provide compatibility with

the main controller developed above. There should therefore be no issues with any

combination of vision algorithm and controller.

The two vision algorithms perform to a high standard, both achieving successful

recognition rates of close to 90%. However, both algorithms offer different means of

classification. Algorithm 1 for instance is a simple binary classifier, giving only a ‘yes’

or ‘no’ answer to the question of whether MiRo exists in a ROI. Algorithm 2, however,

offers something rather more interesting, particularly in the way it could be used to af-

fect the behaviour of MiRo. Because it is probabilistic, it is not necessary to present

it as a binary classifier, but rather to let the computed posterior probabilities determine

the ‘probability’ that MiRo decides to follow the detected TMiRo, or not. An example

would be the following: MiRo detects a potential TMiRo in a scene, and has assigned

it with a posterior probability of 0.4. Rather than MiRo deciding to avoid following

the object because the probability is less than half, perhaps MiRo could decide to fol-

low the object with a probability of 0.4, the same probability it assigned to it being

a TMiRo. MiRo’s behaviour would become stochastic under such a rule, and to an

outside observer it would appear as if MiRo had a ‘mind of its own’ – in some situa-

tions it decides to follow TMiRo unrelentingly, whilst at other times MiRo would seem

indifferent to TMiRo. The Bayesian estimator could therefore enable particularly inter-

esting behaviours within MiRo, with the prior probability also having use as a control

64

CHAPTER 7. DISCUSSION AND CONCLUSION 65

mechanism to affect the estimator’s probabilities.1

7.2 Adaptive Control

An adaptive controller is left as a proposal for further work, and the initial development

of such a controller is documented in Section A.6 of the Appendices. Some discussion

should be made related to this proposal here though. The controller’s aim is to over-

come the issue mentioned above, namely the wheel speed differentials. It is hoped that

MiRo could learn, given a certain centroid and its rate of change, which wheel speeds

would be optimal for these set of states. A reinforcement learning mechanism is imple-

mented with centroid positions and centroid velocities used as reward signals – the goal

is to give greater rewards as the centroid and its velocity moves towards zero, which

would indicate perfect following. Whether it works effectively is as yet unknown, but

its current form still lacks perhaps one crucial element for it being an even more ro-

bust controller – it can only consider the differential speeds between MiRo and TMiRo,

and cannot compute TMiRo’s global velocity (relative to the environment’s reference

frame). This is crucial in order to distinguish whether TMiRo’s movements are due to

MiRo’s own movements, TMiRo’s movements, or both. The original controller doesn’t

suffer this problem, as centroid rate of change is not a parameter used in its computa-

tions.

It could be possible to incorporate this into the proposed controller however. Con-

sider that there is some mapping that can convert wheel speeds to a relative camera

speed, using MiRo’s angular velocity as given by Equation 5.2,

ċmap = a(ωR−ωL) (7.1)

where a is the parameter to map angular rotation to a useful relative image pixel rate of

change. The global rate of change of an interest point, or the centroid, ċg, can then be

estimated by subtracting the mapped relative speed above from the relative speed. The

mapped speed could be estimated through experimental work by measuring how a still

object’s position in an image changes with MiRo’s angular velocity. The mapped speed

1Consider another interesting possibility, in that MiRo’s current ‘mood’ (MiRo has the ability to
exhibit ‘affective states’ – see (Collins, Prescott, and Mitchinson, 2015a)) affects the prior probability.

CHAPTER 7. DISCUSSION AND CONCLUSION 66

would then offer further useful information for determining how wheel speeds should

be set. This wouldn’t just be functional for the adaptive controller proposed, but for

potentially other tasks too, such as velocity predictions in a filter.

7.3 A Final Discussion on Collective Behaviour

The work conducted as part of this project provides the potential for developing further

types of collective behaviours, aside from following, to be explored in MiRo. Chap-

ter 2’s review of the literature on collective behaviours should offer a wide range of

potential collective behaviour research areas, with group herding, flocking, following,

communication strategies (direct, stigmergic and non-communicative), analysis at the

micro-level, macro-level, and mathematical models of group behaviours all discussed.

Of most interest could be the type of flocking behaviour exhibited in selfish-herd

theory as studied by King et al. (2012) in sheep and as studied by Calvao and Brigatti

(2014) in robots, both discussed in Chapter 2. Particularly necessary for implementing

these behaviours was a method for the robots to detect each other and to estimate their

distances from one another. A solution to the first has been offered as part of the work

documented in this thesis; as for the second, this has partly been achieved, yet there re-

mains the need for a more robust depth estimator, and further work on depth estimation

should therefore be carried out, for which the initial theory is already laid out in Section

3.2.3.

Aside from following, herding and flocking, the vision algorithms are also well

suited as a MiRo face-detector. Whilst face-detectors are already rather popular within

literature and in open source vision modules, applying one for MiRo in order to detect

another MiRo’s face would be simple (MiRo has only one standard face shape and

colour), and beneficial for exploring collective behaviours that require knowledge of

MiRo’s orientation, as well as certain types of communication.

7.4 Looking Back at the Project Objectives

The work documented thus far has hopefully made it clear that all (with one exception

to be discussed) of the basic objectives laid out in Section 1.4 have been successfully

achieved. A literature review on a wide variety of collective behaviours and vision

CHAPTER 7. DISCUSSION AND CONCLUSION 67

techniques has been conducted; two vision algorithms have successfully been developed

to allow "MiRo-detection", with each compared using computation times and accuracy;

a following technique has been developed and was subsequently successfully tested on

MiRo.

The only objective not carried out was in incorporating MiRo’s current motion de-

tection ability with the "MiRo-detection" algorithm. Rather, a different strategy for

motion tracking was implemented by simply taking a point position (centroid) and us-

ing the point to track MiRo’s position between camera frames.

The advanced objective has not been conducted, but is left open for further work.

7.5 Conclusions

The main aim of this project was to have MiRo following another MiRo using only

its vision, and this has successfully been accomplished under controlled settings. Re-

iterating the closing section of the discussion above, all but one of the project’s ob-

jectives have been adequately accomplished, including literature reviews on collective

behaviours and vision techniques, the development of two vision algorithms for "MiRo-

detection" and their comparisons, and of a control strategy to allow MiRo to follow

another MiRo. Finally, this has been tested with some success on the real-world MiRo.

The two vision algorithms – the first using grey-scale image histograms with a per-

ceptron neural network and the second using the SURF algorithm with Bayesian infer-

ence – perform respectably well for detecting MiRo, with both performing close to 90%

correct detections on a set of training images. The first algorithm slightly outperformed

the second both in terms of detection (90.1% vs 87.8%) and in terms of relative exe-

cution time (0.271ms vs 84.729ms). An adaptive threshold has efficiently been applied

for extracting a region of interest in order to speed up the vision algorithms. Yet despite

this, the Bayesian estimation computations of algorithm 2 take a considerable amount

of processing time, hence the reason for the overall slow execution time of algorithm 2

versus algorithm 1.

For developing a following strategy in MiRo, the controller then computes the cen-

troid positions of the detected MiRo in each of MiRo’s camera streams, to which the

centroid values are mapped into wheel velocities. The parameters in this mapping have

CHAPTER 7. DISCUSSION AND CONCLUSION 68

been optimised to give the most efficient following behaviour. This controller was ap-

plied with success on the real-world MiRo robot when using only the ROI algorithm.

The developed vision algorithms do have important implications for future research

within MiRo, and are particularly useful as tools for studying more complex forms of

collective behaviours. Phenomena such as flocking, herding, other physical interactions

and certain forms of communication strategies could be explored now that there exists

vision algorithms that can perform "MiRo-detection".

The work presented in this thesis will continue development post-completion of the

author’s MSc degree in collaboration with Consequential Robotics, and hence there are

areas of important further development to be mentioned; these are covered in the next

section.

7.5.1 Further Work

MiRo is a versatile robot, and there are many number of further research avenues that

could be pursued on its platform. With regards to work conducted on this project how-

ever (that will, as mentioned above, be undertaken post completion of the project), there

is one immediate focus for further work that should be considered: to fully test both of

the vision algorithms in real-time on-board the actual MiRo. Although the develop-

ment and testing was conducted off-board with images captured directly from MiRo’s

cameras, and therefore the algorithms should transfer comfortably for use in MiRo, it

is still necessary to test how the algorithms perform when noise, image disturbances

and lost frames are introduced, as well as ensuring MiRo has the computing resources

(speed and memory) to run both on-board.

Other work should involve the development of a method for finding the absolute

velocity of an image interest point / centroid; developing further the adaptive controller;

and then combining these two developments to enable a more robust controller. There

is also the necessity to estimate object depth using MiRo’s dual cameras, which again

should be no more difficult than performing experimentation and/or the development of

a mathematical model.

Finally, the herding/flocking behaviours of the advanced objective set out at the be-

ginning of this project should not be forgotten, and through use of the vision algorithms

developed here these offer an interesting area for future research.

Chapter 8

Project Management and Self Review

8.1 Project Management

Upon completion of the Interim Report, 4 milestones were set for the forthcoming

project duration, which were then inserted into the project timing plan (see the ‘pur-

ple’ milestones in Appendix A.7). Although progress on each milestone was intended

to be undertaken upon successful completion of a previous milestone, it later became

possible to undertake a later milestone before thorough completion of the preceding

milestones. An example of this was how milestone 3 – developing a MiRo-MiRo fol-

lowing strategy – could be performed without relying on the full completion of the

algorithms in milestone 1, since only a simple threshold detection was necessary.

Furthermore, milestone 2 actually became unnecessary to complete, as adequate

tracking was achievable without the need to incorporate MiRo’s original motion detec-

tor. Hence no work was conducted towards achieving this milestone.

This was, however, partly a reflection of how involved the vision algorithms had

become, and although the original timing plan had allotted 2 weeks for full completion

of the algorithms, it actually ran for most of the project period.

A final note is that the thesis itself was written in incremental stages as originally

planned. As such, the basic objectives were completed two weeks ahead of the project

deadline, allowing some time to consider the development of an adaptive controller

strategy. Completed also were constant and regular log book entries1.

The project timing plan Gantt chart is given in Appendix A.7 with a comparison of

the original timings vs the actual. Table 8.1 summarises the statuses of the milestones.

1Available upon request

69

CHAPTER 8. PROJECT MANAGEMENT AND SELF REVIEW 70

Table 8.1: Summary of the project’s milestones

Milestone
Planned
completion

Actual com-
pletion

Notes

1. Apply two or three de-
tection algorithms to achieve
“MiRo-detection”

25/06/2017 13/08/2017

Generating a robust detector
took longer than planned, but
had little effect on the devel-
opment of the controller

2. Incorporate MiRo’s cur-
rent motion detection ability
with the “MiRo-detection”
algorithm to track MiRos

09/07/2017 N/A
Tracking was completed in-
dependently with the vision
algorithms

3. Develop a MiRo-MiRo
following technique and per-
form simulations

23/07/2017 09/07/2017

Completed ahead of schedule
as a simpler vision algorithm
could be used in its develop-
ment

4. Test the winning algorithm
on the physical robot

30/07/2017 13/08/2017
Delayed by two weeks due to
the vision algorithms delay

8.2 Self Review
Learning and the application of learned materials are invariably important conditions

for the completion of a successful research project, as is the ability to find potential

connections between ideas and concepts that to most seem disconnected – the basis

of creativity. Finding such connections are possible perhaps only through careful and

fluent understandings of separate subjects. Whilst it was important that this project

produced useful outcomes, it was also a creative experiment in how different scientific

concepts – zoology, computational neuroscience, classical systems modelling and con-

trol, biologically inspired control, and computer vision, could be coherently united to

achieve the project aim.

If there has been anything of significance learned from undertaking this project,

whether it be proper time management, importance of keeping log-books, being an in-

dependent researcher, or effective reviewing of literature, it has probably been this: that

in order to fully understand a particular topic, it would undoubtedly require substan-

tial amounts of time; but also that new insights can often come from the application of

a concept in one subject to the rules of another. This requires having comprehensive

understandings of multiple subject areas, which no doubt would be an inescapably ar-

duous proposition. Hence there can be no other way than for effective collaboration

amongst teams and individuals. As a student with a preference for solitude, this un-

derstanding has inspired me more than anything to increase my communications with

others in order to achieve the ultimate aim of knowledge, understanding and discovery.

References

Alpaydin, Ethem (2010). Introduction to Machine Learning. MIT Press. Chap. The Universal

Features of Cells on Earth.

Althnian, Alhanoof and Arvin Agah (2016). “Evolving goal-driven multi-agent communication:

what, when, and to whom”. In: Evolutionary Intelligence 9.4, pp. 181–202.

Altuntas, Nihal et al. (2016). “Reinforcement learning-based mobile robot navigation”. In: Turk-

ish Journal of Electrical Engineering & Computer Sciences 24.3, pp. 1747–1767.

Arkin, Ronald C. (1998). BehaviorâĂŚBased Robotics. Massachusetts Institute of Technology.

Ballerini, Michele et al. (2008). “Empirical investigation of starling flocks: a benchmark study

in collective animal behaviour”. In: Animal Behaviour 76.1, pp. 201 –215.

Baumberg, A. (2000). “Reliable feature matching across widely separated views”. In: Proceed-

ings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat.

No.PR00662). Vol. 1, pp. 774–781.

Bay, Herbert, Tinne Tuytelaars, and Luc Van Gool (2006). “SURF: Speeded Up Robust Fea-

tures”. In: Computer Vision – ECCV 2006: 9th European Conference on Computer Vision,

Graz, Austria, May 7-13, 2006. Proceedings, Part I. Ed. by Aleš Leonardis, Horst Bischof,

and Axel Pinz. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 404–417.

Bellman, Richard E. (1957). Dynamic Programming. Princeton University Press.

Biederman, Irving (1987). “Recognition-by-Components: A Theory of Human Image Under-

standing”. In: Psychological Review 92.2, pp. 115–147.

Biederman, Irving and Ginny Ju (1988). “Surface versus edge-based determinants of visual

recognition”. In: Cognitive Psychology 20.1, pp. 38 –64.

Braitenberg, Valentino (1984). Vehicles: Experiments in Synthetic Psychology. MIT Press.

Brooks, Rodney (1981). “Symbolic reasoning among 3-D models and 2-D images”. In: Artificial

Intelligence 17.1, pp. 285 –348.

— (1991). “Artificial Life and Real Robots”. In: Toward a Practice of Autonomous Systems:

Proceedings of the First European Conference on Artificial Life. Ed. by Francisco J. Varela

and Paul Bourgine. MIT Press, pp. 3–10.

71

REFERENCES 72

Brooks, Rodney (1999). Cambrian Intelligence: The Early History of the New AI. Massachusetts

Institute of Technology.

Bruske, Jorg, Ingo Ahrns, and Gerald Sommer (1997). “An integrated architecture for learn-

ing of reactive behaviors based on dynamic cell structures”. In: Robotics and Autonomous

Systems 22.2, pp. 87 –101.

Burgard, W. et al. (2000). “Collaborative multi-robot exploration”. In: Proceedings 2000 ICRA.

Millennium Conference. IEEE International Conference on Robotics and Automation. Sym-

posia Proceedings (Cat. No.00CH37065). Vol. 1, 476–481 vol.1.

Caldart, Vinícius Matheus, Samanta Iop, and Sonia Zanini Cechin (2014). “Social interactions

in a neotropical stream frog reveal a complex repertoire of visual signals and the use of

multimodal communication”. In: Behaviour 151.6, pp. 719–739.

Calvao, Angelo M. and Edgardo Brigatti (2014). “The Role of Neighbours Selection on Cohe-

sion and Order of Swarms”. In: PLoS One 9.5, e94221.

Campion, G., G. Bastin, and B. D’Andrea-Novel (1996). “Structural Properties and Classifica-

tion of Kinematic and Dynamic Models of Wheeled Mobile Robots”. In: IEEE Transactions

on Robotics and Automation 12, pp. 47–62.

Cazenille, L., N. Bredeche, and J. Halloy (2016). “Automated optimisation of multi-level mod-

els of collective behaviour in a mixed society of animals and robots”. In: ArXiv e-prints.

arXiv: 1602.05830 [nlin.AO].

Ciresan, Dan et al. (2012). “Multi-column deep neural network for traffic sign classification”.

In: Neural Networks 32, pp. 333 –338.

Collins, E.C., T.J. Prescott, and B. Mitchinson (2015a). “Saying It with Light: A Pilot Study of

Affective Communication Using the MIRO Robot”. In: Biomimetic and Biohybrid Systems,

Living Machines 2015. Lecture Notes in Computer Science 9222, pp. 243–255.

Collins, E.C. et al. (2015b). “MIRO: A Versatile Biomimetic Edutainment Robot”. In: Proceed-

ings of the 12th International Conference on Advances in Computer Entertainment Technol-

ogy, pp. 631–634.

Davies, E. R. (2012). Computer and Machine Vision: Fourth Edition. Elsevier Inc.

Dayan, Peter and L. F. Abbot (2001). Theoretical Neuroscience: Computational and Mathemat-

ical Modeling of Neural Systems. MIT Press. Chap. Plasticity and Learning, pp. 281–283.

Di Marzo Serugendo, Giovanna, Marie-Pierre Gleizes, and Anthony Karageorgos (2005). “Self-

organization in multi-agent systems”. In: The Knowledge Engineering Review 20.2, 165âĂŞ189.

Dorigo, Marco and Marco Colombetti (1998). Robot Shaping: An Experiment in Behavior En-

gineering. MIT Press.

REFERENCES 73

Eichenseer, A., M. Batz, and A. Kaup (2016). “Motion estimation for fisheye video sequences

combining perspective projection with camera calibration information”. In: 2016 IEEE In-

ternational Conference on Image Processing (ICIP), pp. 4493–4497.

Ejung, Edgard et al. (2016). “The Influence of Human Body Orientation on Distance Judg-

ments”. In: Frontiers in Psychology 7.

Fagg, A. H., D. Lotspeich, and G. A. Bekey (1994). “A reinforcement-learning approach to

reactive control policy design for autonomous robots”. In: Proceedings of the 1994 IEEE

International Conference on Robotics and Automation. Vol. 1, pp. 39–44.

Fang, Fen and Yong Tsui Lee (2012). “3D reconstruction of polyhedral objects from single

perspective projections using cubic corner”. In: 3D Research 3.2, p. 1.

Ferreira, André et al. (2008). “An approach to avoid obstacles in mobile robot navigation: the

tangential escape”. In: Sba: Controle & Automação Sociedade Brasileira de Automatica 19,

pp. 395 –405.

FESTO (2017). Technical Specifications. [Online: accessed 15-March-2017]. URL: http://

www.festo.com/en/bionickangaroo.

Fine, Benjamin T. and Dylan A. Shell (2013). “Unifying microscopic flocking motion models

for virtual, robotic, and biological flock members”. In: Autonomous Robots 35.2, pp. 195–

219.

From Animals to Animats (1990–2016). “From Animals to Animats: 1–14”. In: International

Conference on Simulation of Adaptive Behavior.

Gautrais, Jacques et al. (2008). “Deciphering Interactions in Moving Animal Groups”. In: PLoS

Computational Biology 8.9, e1002678.

Gil-Jiménez, Pedro et al. (2016). “Estimating the focus of expansion in a video sequence using

the trajectories of interest points”. In: Image and Vision Computing 50, pp. 14 –26.

Girshick, Ross B. et al. (2013). “Rich feature hierarchies for accurate object detection and se-

mantic segmentation”. In: CoRR.

Gonzalez, Rafael and Richard Woods (2010). Digital Image Processing. Pearson Education.

Chap. Wavelets and Multiresolution Processing, pp. 483–546.

Gurney, Kevin et al. (2004). “Computational models of the basal ganglia: from robots to mem-

branes”. In: Trends in Neurosciences 27.8, pp. 453 –459.

Halloy, J. et al. (2007). “Social Integration of Robots into Groups of Cockroaches to Control

Self-Organized Choices”. In: Science 318.5853, pp. 1155–1158.

Hamilton, W.D. (1971). “Geometry for the selfish herd”. In: Journal of Theoretical Biology

31.2, pp. 295 –311.

REFERENCES 74

He, Bo, Hongen Ren, and Wei Kan (2010). “Design and simulation of Behavior-Based Reac-

tive Decision-making Control System for autonomous underwater vehicle”. In: 2010 2nd

International Conference on Advanced Computer Control. Vol. 5, pp. 647–651.

Hebb, Donald (1949). The organization of behavior : a neuropsychological theory. Wiley.

Hinz, Cornelia et al. (2013). “Kin recognition in zebrafish, Danio rerio, is based on imprinting

on olfactory and visual stimuli”. In: Animal Behaviour 85.5. Including Special Section:

Behavioural Plasticity and Evolution, pp. 925 –930.

Hogg, D., F. Martin, and R. Resnick (1991). “Braitenberg Creatures”. In: MIT Epistemology and

Learning Memorandum 13.

Horn, Berthold K.P. and Brian G. Schunck (1981). “Determining optical flow”. In: Artificial

Intelligence 17.1, pp. 185 –203.

Horn, G., B. J. McCabe, and J. Cipolla-Neto (1983). “Imprinting in the domestic chick: The role

of each side of the hyperstriatum ventrale in acquisition and retention”. In: Experimental

Brain Research 53.1, pp. 91–98.

Hurst, Jane L. et al. (2001). “Individual recognition in mice mediated by major urinary proteins”.

In: Nature 414, pp. 631–634.

Isaeva, V. V. (2012). “Self-organization in biological systems”. In: Biology Bulletin 39.2, pp. 110–

118.

Ishikawa, Hiroshi and Davi Geiger (1998). “Occlusions, discontinuities, and epipolar lines in

stereo”. In: Computer Vision — ECCV’98: 5th European Conference on Computer Vision

Freiburg, Germany, June, 2–6, 1998 Proceedings, Volume I. Ed. by Hans Burkhardt and

Bernd Neumann. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 232–248.

Jokinen, Olli and Henrik Haggrén (1998). “Statistical analysis of two 3-D registration and mod-

eling strategies”. In: {ISPRS} Journal of Photogrammetry and Remote Sensing 53.6, pp. 320

–341.

Kernbach, Ed S. (2012). Handbook of Collective Robotics: Fundamentals and Challenges. Pan

Stanford Publishing.

King, Andrew J. et al. (2012). “Selfish-herd behaviour of sheep under threat”. In: Current Biol-

ogy 22.14, R561 –R562.

Kube, C. R. and Hong Zhang (1996). “The use of perceptual cues in multi-robot box-pushing”.

In: Proceedings of IEEE International Conference on Robotics and Automation. Vol. 3,

2085–2090 vol.3.

Kube, C. Ronald and Hong Zhang (1993). “Collective Robotics: From Social Insects to Robots”.

In: Adaptive Behavior 2.2, pp. 189–218.

REFERENCES 75

Landgraf, T. et al. (2010). “A biomimetic honeybee robot for the analysis of the honeybee dance

communication system”. In: 2010 IEEE/RSJ International Conference on Intelligent Robots

and Systems, pp. 3097–3102.

LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton (2015). “Deep Learning”. In: Nature 521,

pp. 436–444.

Lindeberg, Tony (1994). “Scale-space theory: A basic tool for analysing structures at different

scales”. In: Journal of Applied Statistics 21.2, pp. 225–270.

Lorenz, Konrad Z. (1937). “The Companion in the Bird’s World”. In: The Auk 54.3, pp. 245–

273.

Lowe, David G. (2004). “Distinctive Image Features from Scale-Invariant Keypoints”. In: Inter-

national Journal of Computer Vision 60.2, pp. 91–110.

Maekawa, Fumihiko et al. (2006). “Imprinting modulates processing of visual information in

the visual wulst of chicks”. In: BMC Neuroscience 7.75.

Maestripieri, Dario (1996). “Gestural Communication and Its Cognitive Implications in Pigtail

Macaques (Macaca Nemestrina)”. In: Behaviour 133.13, pp. 997–1022.

Marocco, Davide, Angelo Cangelosi, and Stefano Nolfi (2003). “The Emergence of Commu-

nication in Evolutionary Robots”. In: Philosophical Transactions: Mathematical, Physical

and Engineering Sciences 361.1811, pp. 2397–2421.

Matarić, Maja J (1998). “Behavior-based robotics as a tool for synthesis of artificial behavior

and analysis of natural behavior”. In: Trends in Cognitive Sciences 2.3, pp. 82 –86.

Matarić, Maja J. (2001). “Learning in behavior-based multi-robot systems: policies, models, and

other agents”. In: Cognitive Systems Research 2.1, pp. 81 –93.

McInroe, Benjamin et al. (2016). “Tail use improves performance on soft substrates in models

of early vertebrate land locomotors”. In: Science 353, pp. 154–158.

Mérmoud, Gregory (2012). “Design, Modeling and Optimization of Stochastic Reactive Dis-

tributed Robotic Systems”. eng. PhD thesis. Lausanne: ENAC. DOI: 10 . 5075 / epfl -

thesis-5392.

Mitchinson, B. and T.J. Prescott (2016). “MIRO: A robot âĂIJMammalâĂİ with a biomimetic

brain-based control system”. In: Biomimetic and Biohybrid Systems. 5th International Con-

ference, Living Machines, pp. 453 –459.

Najafi, M. H. and M. E. Salehi (2016). “A Fast Fault-Tolerant Architecture for Sauvola Local

Image Thresholding Algorithm Using Stochastic Computing”. In: IEEE Transactions on

Very Large Scale Integration (VLSI) Systems 24.2, pp. 808–812.

REFERENCES 76

Nakamori, T. et al. (2013). “Imprinting modulates processing of visual information in the visual

wulst of chicks”. In: Development, Growth and Differentiation 55.1, pp. 198–206.

Narendra, K.S. and A. M. Annaswamy (1989). Stable Adaptive Systems. Prentice Hall.

Negahdaripour, Shahriar and Berthold K.P Horn (1989). “A direct method for locating the focus

of expansion”. In: Computer Vision, Graphics, and Image Processing 46.3, pp. 303 –326.

Ngo, Trung Dung and Henrik Schiøler (2008). “Truly autonomous robots: hardware design for

an energy trophallactic robot”. In: Artificial Life and Robotics 12.1, pp. 335–345.

Nolfi, Stefano (2005). “Emergence of communication in embodied agents: co-adapting com-

municative and non-communicative behaviours”. In: Connection Science 17.3-4, pp. 231–

248.

Okubo, Akira (1986). “Dynamical aspects of animal grouping: Swarms, schools, flocks, and

herds”. In: Advances in Biophysics 22, pp. 1 –94.

OpenCV (2015a). Color Conversions. [Online: accessed 20-July-2017]. URL: http://docs.

opencv.org/3.1.0/de/d25/imgproc_color_conversions.html.

— (2015b). Structural Analysis and Shape Descriptors. [Online: accessed 27-July-2017]. URL:

http://docs.opencv.org/3.1.0/d3/dc0/group__imgproc__shape.html#

ga17ed9f5d79ae97bd4c7cf18403e1689a.

Orban, Guy A. (1992). “The Analysis of Motion Signals and the Nature of Processing in the

Primate Visual System”. In: Artificial and Biological Vision Systems, pp. 24–56.

Otsu, N. (1979). “A Threshold Selection Method from Gray-Level Histograms”. In: IEEE Trans-

actions on Systems, Man, and Cybernetics 9.1, pp. 62–66.

Picard, Gauthier and Marie-Pierre Gleizes (2003). “An Agent Architecture to Design Self-

Organizing Collectives: Principles and Application”. In: Adaptive Agents and Multi-Agent

Systems: Adaptation and Multi-Agent Learning. Ed. by Eduardo Alonso, Daniel Kudenko,

and Dimitar Kazakov. Berlin, Heidelberg: Springer Berlin Heidelberg, pp. 141–158.

Rescorla, R. A. and A. R. Wagner (1972). “A theory of Pavlovian conditioning: Variations in the

effectiveness of reinforcement and nonreinforcement”. In: Classical conditioning: current

research and theory. Ed. by A. H. Black and W. F. Pokasy. New York: Appleton-Century-

Crofts, pp. 64–98.

Rodríguez, A., J. Gómez, and A. Diaconescu (2015). “Foraging-Inspired Self-Organisation for

Terrain Exploration with Failure-Prone Agents”. In: 2015 IEEE 9th International Confer-

ence on Self-Adaptive and Self-Organizing Systems, pp. 121–130.

Rosenblatt, Frank (1962). Principles of neurodynamics: perceptrons and the theory of brain

mechanisms. Spartan Books.

REFERENCES 77

Rushton, Simon K. and Paul A. Warren (2005). “Moving observers, relative retinal motion and

the detection of object movement”. In: Current Biology 15.14, R542 –R543.

Santamaría, Juan Carlos and Ashwin Ram (1996). “Multistrategy Learning of Adaptive Reactive

Controllers”. In:

Sauvola, J. and M. Pietikäinen (2000). “Adaptive document image binarization”. In: Pattern

Recognition 33.2, pp. 225 –236.

Scharstein, Daniel (1999). View Synthesis Using Stereo Vision. Springer Berlin Heidelberg.

Scholl, Brian J (2001). “Objects and attention: the state of the art”. In: Cognition 80.1âĂŞ2,

pp. 1 –46.

Sermanet, Pierre et al. (2013). “OverFeat: Integrated Recognition, Localization and Detection

using Convolutional Networks”. In: CoRR.

Siegwart, Roland and Illah Nourbakhsh (2004). Autonomous Mobile Robots. Massachusetts In-

stitute of Technology.

Simons, Daniel J and Christopher F Chabris (1999). “Gorillas in Our Midst: Sustained Inatten-

tional Blindness for Dynamic Events”. In: Perception 28.9, pp. 1059–1074.

Simonyan, Karen and Andrew Zisserman (2014). “Very Deep Convolutional Networks for Large-

Scale Image Recognition”. In: CoRR abs/1409.1556.

Smeets, Jeroen B.J. and Eli Brenner (1994). “The difference between the perception of absolute

and relative motion: a reaction time study”. In: Vision Research 34.2, pp. 191 –195.

Suárez, Mark E. and Barbara L. Thorne (2000). “Rate, Amount, and Distribution Pattern of Al-

imentary Fluid Transfer via Trophallaxis in Three Species of Termites (Isoptera: Rhinoter-

mitidae, Termopsidae)”. In: Annals of the Entomological Society of America 93.1, p. 145.

Sumpter, D. J. T. (2006). “The Principles of Collective Animal Behaviour”. In: Philosophical

Transactions: Biological Sciences 361.1465, pp. 5–22.

Sutton, Richard S. and Andrew G. Barto (1998). Reinforcement Learning: An Introduction.

Cambridge, Massachusetts: MIT Press.

Tanaka, James, Daniel Weiskopf, and Pepper Williams (2001). “The role of color in high-level

vision”. In: Trends in Cognitive Sciences 5.5, pp. 211 –215.

Consequential Robotics Ltd, (2016). Technical Specifications. [Online: accessed 14-March-

2017]. URL: http://consequentialrobotics.com/technical-specifications/.

Tigli, J. Y. et al. (1993). “Methodology and computing model for a reactive mobile robot con-

troller”. In: Proceedings of IEEE Systems Man and Cybernetics Conference - SMC. Vol. 2,

pp. 317–322.

REFERENCES 78

Trianni, Vito and Marco Dorigo (2006). “Self-organisation and communication in groups of

simulated and physical robots”. In: Biological Cybernetics 95.3, pp. 213–231.

Tversky, Barbara and Kathleen Hemenway (1984). “Objects, Parts, and Categories”. In: Journal

of Experimental Psychology: General 113.2, pp. 169–193.

Uchida, Yusuke (2016). “Local Feature Detectors, Descriptors, and Image Representations: A

Survey”. In: CoRR. University of Tokyo.

Viola, P. and M. Jones (2001). “Rapid object detection using a boosted cascade of simple fea-

tures”. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition. CVPR 2001. Vol. 1, pp. 511–518.

Wada, K. et al. (2003). “Psychological and social effects of robot assisted activity to elderly

people who stay at a health service facility for the aged”. In: Proceedings of the IEEE

International Conference on Robotics and Automation, pp. 3996–4001.

Wahde, Mattias (2016). Introduction to Autonomous Robots. Chalmers University of Technol-

ogy. Chap. Kinematics and Dynamics, pp. 21–28.

Wang, B. R. et al. (2014). “Design of Jitter Compensation Algorithm for Robot Vision Based

on Optical Flow and Kalman Filter”. In: The Scientific World Journal 130806.

Wang, Zhenshi and Xuezhe Wei (2015). “Design Considerations for Wireless Charging Systems

with an Analysis of Batteries”. In: Energies 8.10, pp. 10664–10683.

Watson, Andrew B. and John I. Yellott (2012). “A unified formula for light-adapted pupil size”.

In: Journal of Vision 12.10, p. 12.

Wei, Shui gen et al. (2011). “Motion Detection Based on Optical Flow and Self-adaptive Thresh-

old Segmentation”. In: Procedia Engineering 15, pp. 3471 –3476.

Weidner, Ralph et al. (2014). “The moon illusion and size-distance scaling–evidence for shared

neural patterns”. In: Journal of cognitive neuroscience 26.8, pp. 1871–1882.

Weszka, Joan S. (1977). “A Survey of Threshold Selection Techniques”. In: Computer Graphics

and Image Processing 7, pp. 259–265.

Wit, C. Canudas de and O. J. Sordalen (1993). “Exponential Stabilization of Mobile Robots

with Nonholonomic Constraints”. In: IEEE Transactions on Robotics and Automation 37,

pp. 1791–1797.

Wit, Lee H. de et al. (2011). “Investigating the Status of Biological Stimuli as Objects of Atten-

tion in Multiple Object Tracking”. In: PLOS ONE 6.3, pp. 1–8.

Wolfe, Jeremy M. (2010). “Visual search”. In: Current Biology 20.8, R346 –R349.

Wood, Justin N. (2014). “Newly Hatched Chicks Solve the Visual Binding Problem”. In: Psy-

chological Science 25.7, pp. 1475–1481.

REFERENCES 79

Wood, Samantha M. W. and Justin N. Wood (2015). “A chicken model for studying the emer-

gence of invariant object recognition”. In: Frontiers in Neural Circuits 9.7.

Xu, Gang and Zhengyou Zhang (1996). Epipolar Geometry in Stereo, Motion and Object Recog-

nition: A Unified Approach. Springer Science & Business Media.

Yahya, A. et al. (2016). “Collective Robot Reinforcement Learning with Distributed Asyn-

chronous Guided Policy Search”. In: ArXiv e-prints. arXiv: 1610.00673 [cs.LG].

Zhu, Anmin et al. (2005). “A Neuro-fuzzy Controller for Reactive Navigation of a Behaviour-

Based Mobile Robot”. In: Advances in Neural Networks – ISNN 2005: Second International

Symposium on Neural Networks, Chongqing, China, May 30 - June 1, 2005, Proceedings,

Part III. Ed. by Jun Wang, Xiao-Feng Liao, and Zhang Yi. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 259–264.

Appendices

A.1 The Perceptron Algorithm – Python Source Code

The below script is divided in to 3 main functions. The first, named image_noise_histograms,

takes a greyscale image, adds Gaussian salt-and-pepper noise to the image, and returns

a histogram vector according to the number of bins set (values range from 0-255). The

second, named perceptron_ANN_train, trains the perceptron algorithm according to

Section 4.2.3. The third, named perceptron_ANN_test, then tests the network on val-

idation data. Finally, below the functions lies the script that retrieves the images for

training, calls the histogram and perceptron training functions, and finally retrieves the

number of correctly classified images.

1 import numpy as np

2 from m a t p l o t l i b import p y p l o t a s p l t

3 import cv2

4 import random

5 import os

6

7 # f u n c t i o n f o r d i s p l a y i n g an image

8 def imshow (img) :

9 cv2 . imshow (’ Image ’ , img)

10 cv2 . wai tKey (0)

11 cv2 . des t royAl lWindows ()

12

13 def i m a g e _ n o i s e _ h i s t o g r a m s (img , s td_dev , b i n s) :

14 # f u n c t i o n f o r add ing Gauss ian n o i s e t o an image and r e t u r n i n g i t s

g r e y s c a l e h i s t o g r a m

15

16 ### e x t r a c t i n g t h e h i s t o g r a m s f o r a l l p o s i t i v e images

17

80

APPENDICES 81

18 # add Gauss ian n o i s e t o t h e image

19 n o i s e = cv2 . r andn (np . z e r o s ((img . shape) , np . i n t 8) , 0 , s t d _ d e v)

20 img_no i se = img + n o i s e

21 img_no i se = np . c l i p (img_noise , 0 , 2 5 5)

22 img_no i se = np . u i n t 8 (img_no i se)

23

24 # c a l c u l a t e t h e n o r m a l i s e d h i s t o g r a m v e c t o r f o r t h e image

25 h i s t = cv2 . c a l c H i s t ([img_no i se] , [0] , None , [b i n s] , [0 , 2 5 6])

26 h i s t _ n o r m = h i s t / sum (h i s t)

27

28 re turn h i s t _ n o r m

29

30 def p e r c e p t r o n _ A N N _ t r a i n (t r a i n i n g _ p o s _ h i s t s , t r a i n i n g _ n e g _ h i s t s , w,

e t a , b e t a) :

31 # T r a i n i n g t h e p e r c e p t r o n w e i g h t s g i v e n p o s i t i v e and n e g a t i v e

t r a i n i n g s e t s , p l u s i n i t i a l w e i g h t s

32

33 t r a i n i n g _ p o s = t r a i n i n g _ p o s _ h i s t s

34 t r a i n i n g _ n e g = t r a i n i n g _ n e g _ h i s t s

35

36 # a s s i g n t h e p o s i t i v e and n e g a t i v e images w i t h t h e c o r r e c t

c l a s s i f i e r

37 t r a i n = np . z e r o s ((l e n (t r a i n i n g _ p o s) , 2))

38 t r a i n _ p o s = t r a i n . a s t y p e (np . o b j e c t)

39 f o r h in range (l e n (t r a i n i n g _ p o s)) :

40 t r a i n _ p o s [h , 0] = t r a i n i n g _ p o s [h]

41 t r a i n _ p o s [h , 1] = 1

42

43 t r a i n = np . z e r o s ((l e n (t r a i n i n g _ n e g) , 2))

44 t r a i n _ n e g = t r a i n . a s t y p e (np . o b j e c t)

45 f o r h in range (l e n (t r a i n i n g _ n e g)) :

46 t r a i n _ n e g [h , 0] = t r a i n i n g _ n e g [h]

47 t r a i n _ n e g [h , 1] = 0

48

49 #### t r a i n t h e ne twork

50 n o I t e r = 100000

51 i = 0

52 e = np . z e r o s (n o I t e r +1)

53 e [0] = 0 . 5

APPENDICES 82

54 a l p h a = 0 .0001

55 whi le i < n o I t e r :

56 # t a k e an image a t random

57 pos_or_neg = np . round (np . random . r and ())

58 i f pos_or_neg :

59 i n d e x = np . random . r a n d i n t (l e n (t r a i n i n g _ p o s))

60 img = t r a i n _ p o s [i n d e x]

61 e l s e :

62 i n d e x = np . random . r a n d i n t (l e n (t r a i n i n g _ n e g))

63 img = t r a i n _ n e g [i n d e x]

64

65 # compute t h e o u t p u t as a s i m p l e l i n e a r sum o f i n p u t s x w e i g h t s

+ b i a s

66 y = np . d o t (np . t r a n s p o s e (img [0]) ,w) #+ b e t a

67

68 # u pd a t e t h e e r r o r r a t e w i t h e x p o n e n t i a l smoo th ing

69 i f (y < b e t a) & (img [1] == 0) :

70 H = 1

71 e l i f (y > b e t a) & (img [1] == 1) :

72 H = 1

73 e l i f (y < b e t a) & (img [1] == 1) :

74 H = 0

75 e l s e :

76 H = 0

77 e [i +1] = a l p h a ∗H + (1 − a l p h a) ∗e [i]

78

79 # u pd a t e t h e w e i g h t s

80 w = w + e t a ∗ (img [1] − y) ∗ img [0]

81

82 i += 1

83

84 re turn w, e

85

86 def p e r c e p t r o n _ A N N _ t e s t (v a l i d a t e _ p o s , v a l i d a t e _ n e g , w, b e t a) :

87 ### t e s t t h e n e t on t h e v a l i d a t i o n da ta

88 o u t p u t s = []

89 # a s s i g n t h e p o s i t i v e and n e g a t i v e images w i t h t h e c o r r e c t

c l a s s i f i e r

90 t r a i n = np . z e r o s ((l e n (v a l i d a t e _ p o s) , 2))

APPENDICES 83

91 t r a i n _ p o s = t r a i n . a s t y p e (np . o b j e c t)

92 f o r h in range (l e n (v a l i d a t e _ p o s)) :

93 t r a i n _ p o s [h , 0] = v a l i d a t e _ p o s [h]

94 t r a i n _ p o s [h , 1] = 1

95

96 t r a i n = np . z e r o s ((l e n (v a l i d a t e _ n e g) , 2))

97 t r a i n _ n e g = t r a i n . a s t y p e (np . o b j e c t)

98 f o r h in range (l e n (v a l i d a t e _ n e g)) :

99 t r a i n _ n e g [h , 0] = v a l i d a t e _ n e g [h]

100 t r a i n _ n e g [h , 1] = 0

101 c o r r e c t = 0

102 f a l s e _ n e g = 0

103 f a l s e _ p o s = 0

104 f o r i in range (l e n (v a l i d a t e _ p o s)) :

105 img = t r a i n _ p o s [i]

106

107 # compute t h e o u t p u t as a s i m p l e l i n e a r sum o f i n p u t s x w e i g h t s

+ b i a s

108 y = np . d o t (np . t r a n s p o s e (img [0]) ,w)

109

110 i f (y < b e t a) & (img [1] == 0) :

111 c o r r e c t += 1

112 e l i f (y > b e t a) & (img [1] == 1) :

113 c o r r e c t += 1

114 e l i f (y < b e t a) & (img [1] == 1) :

115 f a l s e _ n e g += 1

116 e l s e :

117 f a l s e _ p o s += 1

118 i += 1

119 o u t p u t s . append (y)

120

121 f o r i in range (l e n (v a l i d a t e _ n e g)) :

122 img = t r a i n _ n e g [i]

123

124 # compute t h e o u t p u t as a s i m p l e l i n e a r sum o f i n p u t s x w e i g h t s

+ b i a s

125 y = np . d o t (np . t r a n s p o s e (img [0]) ,w)

126

127 i f (y < b e t a) & (img [1] == 0) :

APPENDICES 84

128 c o r r e c t += 1

129 e l i f (y > b e t a) & (img [1] == 1) :

130 c o r r e c t += 1

131 e l i f (y < b e t a) & (img [1] == 1) :

132 f a l s e _ n e g += 1

133 e l s e :

134 f a l s e _ p o s += 1

135 i += 1

136 o u t p u t s . append (y)

137 p r o p o r t i o n _ c o r r e c t = f l o a t (c o r r e c t) / (l e n (v a l i d a t e _ p o s) + (l e n (

v a l i d a t e _ n e g)))

138

139 re turn p r o p o r t i o n _ c o r r e c t , c o r r e c t , f a l s e _ n e g , f a l s e _ p o s , o u t p u t s

140

141 # t h e d i r e c t o r y f o r t h e p o s i t i v e and n e g a t i v e images

142 p o s i t i v e _ i m a g e s _ d i r = ’ t r a i n i n g _ i m a g e s / p o s i t i v e _ i m a g e s ’

143 n e g a t i v e _ i m a g e s _ d i r = ’ t r a i n i n g _ i m a g e s / n e g a t i v e _ i m a g e s ’

144

145 # c o n s t a n t s and l i s t s

146 e t a = 10 # l e a r n i n g r a t e

147 b e t a = 0 . 5 # d e c i s i o n boundary

148 b i n s = 256 # number o f b i n s f o r h i s t o g r a m s

149 h i s t s _ p o s = []

150 h i s t s _ n e g = []

151 c o r r e c t = []

152 f a l s e _ n e g s = []

153 f a l s e _ p o s s = []

154 e r r o r = []

155

156 # b e g i n s t o r i n g t h e image da ta

157 p r i n t ’ S t o r i n g image d a t a . . . ’

158 imgs_pos = []

159 imgs_neg = []

160 f o r f i l e n a m e in os . l i s t d i r (p o s i t i v e _ i m a g e s _ d i r) :

161 img = cv2 . imread (os . p a t h . j o i n (p o s i t i v e _ i m a g e s _ d i r , f i l e n a m e))

162 i f img i s not None :

163 img = cv2 . c v t C o l o r (img , cv2 .COLOR_BGR2GRAY)

164 imgs_pos . append (img)

165 f o r f i l e n a m e in os . l i s t d i r (n e g a t i v e _ i m a g e s _ d i r) :

APPENDICES 85

166 img = cv2 . imread (os . p a t h . j o i n (n e g a t i v e _ i m a g e s _ d i r , f i l e n a m e))

167 i f img i s not None :

168 img = cv2 . c v t C o l o r (img , cv2 .COLOR_BGR2GRAY)

169 imgs_neg . append (img)

170 p r i n t ’ Completed c o l l e c t i n g image d a t a . ’

171

172 p r i n t ’ S t a r t i n g t h e t r a i n i n g and v a l i d a t i n g . . . ’

173 # s t a r t t h e t r a i n i n g and v a l i d a t i n g

174 f o r Round in range (1 0 0) :

175 f o r i in range (l e n (imgs_pos)) :

176 h i s t = i m a g e _ n o i s e _ h i s t o g r a m s (imgs_pos [i] , s t d _ d e v =10 , b i n s

=256)

177 h i s t s _ p o s . append (h i s t)

178 f o r i in range (l e n (imgs_neg)) :

179 h i s t = i m a g e _ n o i s e _ h i s t o g r a m s (imgs_neg [i] , s t d _ d e v =10 , b i n s

=256)

180 h i s t s _ n e g . append (h i s t)

181

182 # e x t r a c t t h e v a l i d a t i o n s e t s a t random and d e l e t e them from t h e

t r a i n i n g s e t s

183 v a l _ i n d e x _ p o s = random . sample (range (l e n (h i s t s _ p o s)) , 4)

184 v a l _ i n d e x _ n e g = random . sample (range (l e n (h i s t s _ n e g)) , 4)

185 v a l i d a t e _ p o s = [h i s t s _ p o s [i] f o r i in v a l _ i n d e x _ p o s]

186 v a l i d a t e _ n e g = [h i s t s _ n e g [i] f o r i in v a l _ i n d e x _ n e g]

187 f o r i n d e x in s o r t e d (v a l _ i n d e x _ p o s , r e v e r s e =True) :

188 d e l h i s t s _ p o s [i n d e x]

189 f o r i n d e x in s o r t e d (v a l _ i n d e x _ n e g , r e v e r s e =True) :

190 d e l h i s t s _ n e g [i n d e x]

191

192 # t r a i n t h e p e r c e p t r o n and g e t t h e ne twork w e i g h t s

193 # i n i t i a l i s e t h e w e i g h t s and n o r m a l i s e

194 w = np . random . rand ((b i n s))

195 w = (w / np . l i n a l g . norm (w)) . r e s h a p e ((b ins , 1))

196 w, e = p e r c e p t r o n _ A N N _ t r a i n (h i s t s _ p o s , h i s t s _ n e g , w, e t a , b e t a)

197 e r r o r . append (e)

198 # t e s t t h e p e r c e p t r o n

199 p r o p o r t i o n _ c o r r e c t , n o _ c o r r e c t , f a l s e _ n e g , f a l s e _ p o s , o u t p u t s =

p e r c e p t r o n _ A N N _ t e s t (v a l i d a t e _ p o s , v a l i d a t e _ n e g , w, b e t a)

200 c o r r e c t . append (p r o p o r t i o n _ c o r r e c t)

APPENDICES 86

201 f a l s e _ n e g s . append (f a l s e _ n e g)

202 f a l s e _ p o s s . append (f a l s e _ p o s)

203 p r i n t ’ Round ’ , Round +1 , ’ o f t r a i n i n g and v a l i d a t i n g c o m p l e t e ! ’

204 # p r i n t o u t p u t s

205 p r i n t ’ P r o p o r t i o n c o r r e c t = ’ , c o r r e c t

206 p r i n t ’ Number o f f a l s e−n e g a t i v e s = ’ , f a l s e _ n e g s

207 p r i n t ’ Number o f f a l s e−p o s i t i v e s = ’ , f a l s e _ p o s s

APPENDICES 87

A.2 Computing the value of w in the approximated Hes-

sian determinant

Recall that the formula for computing the weight w was given by,

w≈
||Lxy(σ)||F ||Dxx(n)||F
||Lxx(σ)||F ||Dxy(n)||F

(A.1)

where n is the size of the box filter used in the approximation of the second order

Gaussian, and || · ||F is the Frobenius norm operator.

The Frobenius norm can be calculated by taking the square root of the Frobenius

inner product, say for instance matrix A,

||A||F =
√
〈A,A〉F (A.2)

where the Frobenius inner product is given by,

〈A,A〉F = tr
(
AT A

)
(A.3)

We now define the matrices Dxx and Dxy by converting Figure 4.14 into matrix form,

Dxx =



0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

1 1 1 -2 -2 -2 1 1 1

1 1 1 -2 -2 -2 1 1 1

1 1 1 -2 -2 -2 1 1 1

1 1 1 -2 -2 -2 1 1 1

1 1 1 -2 -2 -2 1 1 1

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0



, Dxy =



0 0 0 0 0 0 0 0 0

0 1 1 1 0 -1 -1 -1 0

0 1 1 1 0 -1 -1 -1 0

0 1 1 1 0 -1 -1 -1 0

0 0 0 0 0 0 0 0 0

0 -1 -1 -1 0 1 1 1 0

0 -1 -1 -1 0 1 1 1 0

0 -1 -1 -1 0 1 1 1 0

0 0 0 0 0 0 0 0 0


(A.4)

Applying (A.2) to (A.4) gives,

||Dxx||F =
√
〈Dxx,Dxx〉F = 9.4868

||Dxy||F =
√
〈Dxy,Dxy〉F = 6.0

(A.5)

APPENDICES 88

We next discretise a 9x9 box with the centre space having location (xcentre,ycentre) =

(0,0), and ranging from (−4,−4) to (4,4), as in (A.6)



(-4,4) (-3,4) (-2,4) (-1,4) (0,4) (1,4) (2,4) (3,4) (4,4)

(-4,3) (-3,3) (-2,3) (-1,3) (0,3) (1,3) (2,3) (3,3) (4,3)

(-4,2) (-3,2) (-2,2) (-1,2) (0,2) (1,2) (2,2) (3,2) (4,2)

(-4,1) (-3,1) (-2,1) (-1,1) (0,1) (1,1) (2,1) (3,1) (4,1)

(-4,0) (-3,0) (-2,0) (-1,0) (0,0) (1,0) (2,0) (3,0) (4,0)

(-4, -1) (-3, -1) (-2, -1) (-1, -1) (0, -1) (1, -1) (2, -1) (3, -1) (4, -1)

(-4, -2) (-3, -2) (-2, -2) (-1, -2) (0, -2) (1, -2) (2, -2) (3, -2) (4, -2)

(-4, -3) (-3, -3) (-2, -3) (-1, -3) (0, -3) (1, -3) (2, -3) (3, -3) (4, -3)

(-4, -4) (-3, -4) (-2, -4) (-1, -4) (0, -4) (1, -4) (2, -4) (3, -4) (4, -4)


(A.6)

Take next the Gaussian function from Equation 4.10, for which the second order deriva-

tives are given by,
∂ 2

∂x2 G(σ) =
x2−σ2

2πσ6 exp
(
−x2 + y2

2σ2

)
∂ 2

∂x∂y
G(σ) =

xy
2πσ6 exp

(
−x2 + y2

2σ2

) (A.7)

and applying (A.7) to the (x,y) positions in (A.6) gives,

Lxx =



0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 0.001 0.001 -0.001 -0.003 -0.001 0.001 0.001 0.000

0.001 0.004 0.008 -0.004 -0.019 -0.004 0.008 0.004 0.001

0.002 0.013 0.024 -0.012 -0.054 -0.012 0.024 0.013 0.002

0.003 0.018 0.034 -0.017 -0.077 -0.017 0.034 0.018 0.003

0.002 0.013 0.024 -0.012 -0.054 -0.012 0.024 0.013 0.002

0.001 0.004 0.008 -0.004 -0.019 -0.004 0.008 0.004 0.001

0.000 0.001 0.001 -0.001 -0.003 -0.001 0.001 0.001 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000



,

APPENDICES 89

Lxy =



0.000 0.000 0.000 0.001 0.000 -0.001 0.000 0.000 0.000

0.000 0.001 0.004 0.005 0.000 -0.005 -0.004 -0.001 0.000

0.000 0.004 0.013 0.019 0.000 -0.019 -0.013 -0.004 0.000

0.001 0.005 0.019 0.027 0.000 -0.027 -0.019 -0.005 -0.001

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

-0.001 -0.005 -0.019 -0.027 0.000 0.027 0.019 0.005 0.001

0.000 -0.004 -0.013 -0.019 0.000 0.019 0.013 0.004 0.000

0.000 -0.001 -0.004 -0.005 0.000 0.005 0.004 0.001 0.000

0.000 0.000 0.000 -0.001 0.000 0.001 0.000 0.000 0.000


(A.8)

where I in the convolution is equal unity.

Again, applying (A.2) to (A.8) gives,

||Lxx||F =
√
〈Lxx,Lxx〉F = 0.1414

||Lxy||F =
√
〈Lxy,Lxy〉F = 0.0816

(A.9)

to which the weight w can now be computed,

w≈
||Lxy(σ)||F ||Dxx(n)||F
||Lxx(σ)||F ||Dxy(n)||F

=
0.0816×9.4868

0.1414×6.0
= 0.9125..≈ 0.9 (A.10)

APPENDICES 90

A.3 SURF with Bayesian Estimation – Python Source

Code

The following Python code extracts interest points and their descriptors by implement-

ing the SURF algorithm using OpenCV’s SURF module. It then proceeds to compute

the posterior probability of an image being a MiRo given the feature vectors, according

to the procedure laid out in Section 4.3.3.

1 i m p o r t cv2

2 i m p o r t os

3 i m p o r t numpy as np

4 i m p o r t random

5

6 s u r f = cv2 . SURF(4 0 0 , e x t e n d e d = F a l s e)

7

8 d e f imshow (img) :

9 cv2 . imshow (’ image ’ , img)

10 cv2 . wai tKey (0)

11 cv2 . des t royAl lWindows

12

13 p o s i t i v e _ i m a g e s _ d i r = ’C : / Use r s / Matt Work / Dropbox / MSc I n d i v i d u a l

P r o j e c t / ANN_tra in ing / t r a i n i n g _ i m a g e s / p o s i t i v e _ i m a g e s / ’

14 n e g a t i v e _ i m a g e s _ d i r = ’C : / Use r s / Matt Work / Dropbox / MSc I n d i v i d u a l

P r o j e c t / ANN_tra in ing / t r a i n i n g _ i m a g e s / n e g a t i v e _ i m a g e s / ’

15 # b e g i n s t o r i n g t h e image d a t a

16 p r i n t ’ S t o r i n g image d a t a . . . ’

17 imgs_pos = []

18 imgs_neg = []

19 f o r f i l e n a m e i n os . l i s t d i r (p o s i t i v e _ i m a g e s _ d i r) :

20 img = cv2 . imread (os . p a t h . j o i n (p o s i t i v e _ i m a g e s _ d i r , f i l e n a m e))

21 i f img i s n o t None :

22 img = cv2 . c v t C o l o r (img , cv2 .COLOR_BGR2GRAY)

23 imgs_pos . append (img)

24 f o r f i l e n a m e i n os . l i s t d i r (n e g a t i v e _ i m a g e s _ d i r) :

25 img = cv2 . imread (os . p a t h . j o i n (n e g a t i v e _ i m a g e s _ d i r , f i l e n a m e))

26 i f img i s n o t None :

27 img = cv2 . c v t C o l o r (img , cv2 .COLOR_BGR2GRAY)

28 imgs_neg . append (img)

APPENDICES 91

29 p r i n t ’ Completed c o l l e c t i n g image d a t a . ’

30

31 # f o r each n e g a t i v e image , compute t h e s u r f f e a t u r e v e c t o r s

32 f _ d e s c r i p t o r s _ n e g = []

33 f o r i i n r a n g e (l e n (imgs_neg)) :

34 k , des = s u r f . de tec tAndCompute (imgs_neg [i] , None)

35 f _ d e s c r i p t o r s _ n e g . append (des)

36

37 r u n s = 48

38 p r o b a b i l i t i e s = []

39 f o r run i n r a n g e (r u n s) :

40 # f o r each p o s i t i v e image , compute t h e s u r f f e a t u r e v e c t o r s

41 f _ d e s c r i p t o r s = []

42 t = []

43 f o r i i n r a n g e (l e n (imgs_pos)) :

44 k , des = s u r f . de tec tAndCompute (imgs_pos [i] , None)

45 f _ d e s c r i p t o r s . append (des)

46 # e x t r a c t t h e p o s i t i v e v a l i d a t i o n images

47 v a l _ i n d e x _ p o s = random . sample (r a n g e (l e n (imgs_pos)) , 3)

48 v a l _ i n d e x _ p o s = random . r a n d i n t (0 , 4 7)

49 v a l _ i n d e x _ p o s = run

50 i f i s i n s t a n c e (v a l _ i n d e x _ p o s , i n t) :

51 f _ d e s c r i p t o r _ v a l i d a t e = f _ d e s c r i p t o r s [v a l _ i n d e x _ p o s]

52 d e l f _ d e s c r i p t o r s [v a l _ i n d e x _ p o s]

53 e l s e :

54 f _ d e s c r i p t o r s _ v a l i d a t e = [f _ d e s c r i p t o r s [i] f o r i i n

v a l _ i n d e x _ p o s]

55 f o r i n d e x i n s o r t e d (v a l _ i n d e x _ p o s , r e v e r s e =True) :

56 d e l f _ d e s c r i p t o r s [i n d e x]

57

58 # # f o r u s i n g wi th t e s t s on n e g a t i v e images

59 # index_neg = random . r a n d i n t (0 , 7 0 0)

60 # index_neg = run

61 # f _ d e s c r i p t o r _ v a l i d a t e = f _ d e s c r i p t o r s _ n e g [index_neg]

62

63 i f f _ d e s c r i p t o r _ v a l i d a t e i s None :

64 c o n t i n u e

65

66 # f i n d i n g t h e l i k e l i h o o d s f o r t h e image and s t o r i n g i n t o two l i s t s

APPENDICES 92

67 probs_MiRo = []

68 probs_H0 = []

69 t h r e s h = 0 . 4 6

70 f e a t u r e s = f _ d e s c r i p t o r _ v a l i d a t e # e x t r a c t t h e f e a t u r e d e s c r i p t o r s

f o r t h e image

71 f o r f i n r a n g e (l e n (f e a t u r e s)) : # run t h r o u g h each f e a t u r e

d e s c r i p t o r i n t h e image

72 # comput ing f i r s t p (v | MiRo)

73 count_MiRo = 0

74 f o r i m g _ t r a i n i n r a n g e (l e n (f _ d e s c r i p t o r s)) : # run t h r o u g h each

of t h e p o s i t i v e t r a i n i n g images

75 f e a t u r e s _ t r a i n = f _ d e s c r i p t o r s [i m g _ t r a i n] # e x t r a c t t h e

f e a t u r e d e s c r i p t o r s f o r t h e image

76 f o r f _ t r a i n i n r a n g e (l e n (f e a t u r e s _ t r a i n)) : # run t h r o u g h each

of t h e f e a t u r e s i n each t r a i n i n g image

77 d = np . s q r t (np . d o t (np . t r a n s p o s e ((f e a t u r e s [f , :]) −

f e a t u r e s _ t r a i n [f _ t r a i n , :]) , (f e a t u r e s [f , :]) − f e a t u r e s _ t r a i n [

f _ t r a i n , :]))

78 i f d < t h r e s h :

79 count_MiRo += 1

80 b r e a k

81 # comput ing now p (v | H0)

82 count_H0 = 0

83 negs_removed = 0 #some n e g a t i v e images have no f e a t u r e

d e s c r i p t o r s , and need removing from t h e p r o b a b i l i t y e s t i m a t i o n

84 f o r i m g _ t r a i n i n r a n g e (l e n (f _ d e s c r i p t o r s _ n e g)) : # run t h r o u g h

each of t h e n e g a t i v e t r a i n i n g images

85 f e a t u r e s _ t r a i n = f _ d e s c r i p t o r s _ n e g [i m g _ t r a i n] # e x t r a c t t h e

f e a t u r e d e s c r i p t o r s f o r t h e image

86 i f n o t f e a t u r e s _ t r a i n i s None :

87 i f l e n (f e a t u r e s _ t r a i n) < 5 0 :

88 f o r f _ t r a i n i n r a n g e (l e n (f e a t u r e s _ t r a i n)) : # run

t h r o u g h each of t h e f e a t u r e s i n each t r a i n i n g image

89 d = np . s q r t (np . d o t (np . t r a n s p o s e ((f e a t u r e s [f , :]) −

f e a t u r e s _ t r a i n [f _ t r a i n , :]) , (f e a t u r e s [f , :]) − f e a t u r e s _ t r a i n [

f _ t r a i n , :]))

90 i f d < t h r e s h :

91 count_H0 += 1

92 b r e a k

APPENDICES 93

93 e l s e :

94 f o r f _ t r a i n i n r a n g e (5 0) : # run t h r o u g h each of t h e

f e a t u r e s i n each t r a i n i n g image

95 d = np . s q r t (np . d o t (np . t r a n s p o s e ((f e a t u r e s [f , :]) −

f e a t u r e s _ t r a i n [f _ t r a i n , :]) , (f e a t u r e s [f , :]) − f e a t u r e s _ t r a i n [

f _ t r a i n , :]))

96 i f d < t h r e s h :

97 count_H0 += 1

98 b r e a k

99 e l s e :

100 negs_removed += 1

101 p_v_given_MiRo = f l o a t (count_MiRo) / f l o a t (l e n (f _ d e s c r i p t o r s))

+ 0 .001

102 p_v_given_H0 = f l o a t (count_H0) / f l o a t (l e n (f _ d e s c r i p t o r s _ n e g) −

negs_removed) + 0 .001

103 probs_MiRo . append (p_v_given_MiRo)

104 probs_H0 . append (p_v_given_H0)

105 i f f > 2 0 : # on ly e s t i m a t e f o r t h e f i r s t 20 f e a t u r e s

106 b r e a k

107 p_MiRo = 0 . 2 5

108 p_V_given_MiRo = np . prod (np . a r r a y (probs_MiRo))

109 p_V_given_H0 = np . prod (np . a r r a y (probs_H0))

110 p_MiRo_given_V = (p_V_given_MiRo∗p_MiRo) / (p_V_given_H0∗(1−p_MiRo

) + p_V_given_MiRo∗p_MiRo)

111 p r o b a b i l i t i e s . append (p_MiRo_given_V)

APPENDICES 94

A.4 Vision Algorithm Training Images

Figure A.4: All MiRo positive training images used in the vision algorithms training and vali-
dation procedures. Notice the variation in background, orientation and scale. Refer to Chapter
4 for the description of the vision algorithms.

APPENDICES 95

A.5 MiRo Controller – Python Source Code

Python code changes to the functions callback_platform_sensors, imdecode, callback_caml

and callback_camr for implementing the initial controller. The above functions are

found in the miro_ros_client.py script in the MiRo Developer Kit.

1 def c a l l b a c k _ p l a t f o r m _ s e n s o r s (s e l f , o b j e c t) :

2

3 # i g n o r e u n t i l a c t i v e

4 i f not s e l f . a c t i v e :

5 re turn

6

7 # s t o r e o b j e c t

8 s e l f . p l a t f o r m _ s e n s o r s = o b j e c t

9

10 # t i m i n g

11 s y n c _ r a t e = 50

12 p e r i o d = 2 ∗ s y n c _ r a t e # two s e c o n d s per p e r i o d

13 z = s e l f . c o u n t / p e r i o d

14 s e l f . z_bak = z

15

16 q = p l a t f o r m _ c o n t r o l ()

17 max_speed = 200

18

19 # g e t t h e t h r e s h o l d e d v a l u e s f o r each image

20 areaL = 0

21 areaR = 0

22 t r y :

23 a reaL = s e l f . a r e a _ l

24 e xc ep t NameError :

25 pass

26 t r y :

27 areaR = s e l f . a r e a _ r

28 e xc ep t NameError :

29 pass

30

31 c_posL = s e l f . c _ p o s _ l

32 c_posR = s e l f . c _ p o s _ r

33

APPENDICES 96

34 i f (a r eaL and areaR) or a reaL :

35 x _ l = c_posL [0] − 160

36 x_r = c_posR [0] − 160

37 x = x _ l + x_r

38 y _ l = c_posL [1] − 120

39 y_r = c_posR [1] − 120

40 y = (y _ l + y_r) / 2 # y i s average o f two images

41 e l i f areaR :

42 x _ l = c_posL [0] + 160

43 x_r = c_posR [0] − 160

44 x = x _ l + x_r

45 y _ l = c_posL [1] + 120

46 y_r = c_posR [1] − 120

47 y = (y _ l + y_r) / 2 # y i s average o f two images

48 e l s e :

49 x = None

50 y = None

51

52 w h e e l _ s p e e d _ r = 0

53 w h e e l _ s p e e d _ l = 0

54

55 # s p e c i f i y whee l s p e e d s i n mm/ s

56 i f not x i s None :

57 i f x == 0 :

58 w h e e l _ s p e e d _ r = max_speed

59 w h e e l _ s p e e d _ l = max_speed

60 e l i f x < 0 :

61 w h e e l _ s p e e d _ r = max_speed

62 w h e e l _ s p e e d _ l = numpy . exp (0 . 0 0 4∗ x) ∗ max_speed

63 e l s e :

64 w h e e l _ s p e e d _ r = numpy . exp (−0.004∗x) ∗ max_speed

65 w h e e l _ s p e e d _ l = max_speed

66

67 # use t h e area t o compute t h e m o d i f i e d l o g i s t i c f u n c t i o n

68 a r e a _ a v g = (a reaL + areaR) / 2

69 H = 1 . 0 / (1 . 0 + numpy . exp (0 . 0 0 0 8∗ (a r e a _ a v g − 1 0 0 0 0 . 0)))

70 w h e e l _ s p e e d _ l = w h e e l _ s p e e d _ l ∗ H

71 w h e e l _ s p e e d _ r = w h e e l _ s p e e d _ r ∗ H

72

APPENDICES 97

73 # send downstream command , i g n o r i n g ups t ream da ta

74 q . body_ve l . a n g u l a r . z = s e l f . w h e e l _ s p e e d _ 2 _ b o d y _ v e l _ a n g u l a r (

whee l_ speed_ l , w h e e l _ s p e e d _ r)

75 q . body_ve l . l i n e a r . x = s e l f . w h e e l _ s p e e d _ 2 _ b o d y _ v e l _ l i n e a r (

whee l_ speed_ l , w h e e l _ s p e e d _ r)

76

77 # p u b l i s h

78 s e l f . p u b _ r o b o t . p u b l i s h (q)

79

80 # c o u n t

81 s e l f . c o u n t = s e l f . c o u n t + 1

82 i f s e l f . c o u n t == 400 :

83 s e l f . c o u n t = 0

84

85 def imdecode (s e l f , f i f o , frm , o v e r l a y a b l e = F a l s e) :

86 im = cv2 . imdecode (numpy . f r o m s t r i n g (frm . da t a , numpy . u i n t 8) , cv2 .

IMREAD_COLOR)

87 w = im . shape [1]

88 h = im . shape [0]

89 N = h ∗ w

90 f o r i in range (0 , N) :

91 tmp = im . d a t a [i ∗3+0]

92 im . d a t a [i ∗3+0] = im . d a t a [i ∗3+2]

93 im . d a t a [i ∗3+2] = tmp

94 pb = GdkPixbuf . P i x b u f . new_from_data (im . da t a , GdkPixbuf . C o l o r s p a c e .

RGB, F a l s e , 8 , w, h , w∗3)

95 # t h r e s h o l d i n g

96 lower = numpy . a r r a y ([0 , 0 , 1 0 0]) # d e f i n i n g RGB t h r e s h o l d s

97 uppe r = numpy . a r r a y ([1 0 , 1 0 , 2 5 5])

98 mask = cv2 . inRange (im , lower , uppe r)

99 M = cv2 . moments (mask)

100 a r e a = i n t (M[’m00 ’] / 2 5 5) # number o f p i x e l s s u c c e s s f u l l y f i l t e r e d

101 i f a r e a : # o n l y i f miro i s d e t e c t e d

102 cx = i n t (M[’m10 ’] /M[’m00 ’])

103 cy = i n t (M[’m01 ’] /M[’m00 ’])

104 c_pos = ((cx , cy)) # c e n t r o i d p o s i t i o n

105 e l s e :

106 c_pos = ((0 , 0))

107

APPENDICES 98

108 f i f o . push (pb)

109

110 re turn (a r ea , c_pos)

111

112 def c a l l b a c k _ c a m l (s e l f , frm) :

113

114 # i g n o r e u n t i l a c t i v e

115 i f not s e l f . a c t i v e :

116 re turn

117

118 # s t o r e o b j e c t

119 s e l f . a r e a _ l , s e l f . c _ p o s _ l = s e l f . imdecode (s e l f . c a m l _ f i f o , frm ,

True)

120

121 def c a l l b a c k _ c a m r (s e l f , frm) :

122

123 # i g n o r e u n t i l a c t i v e

124 i f not s e l f . a c t i v e :

125 re turn

126

127 # s t o r e o b j e c t

128 s e l f . a r e a _ r , s e l f . c _ p o s _ r = s e l f . imdecode (s e l f . c a m r _ f i f o , frm ,

True)

APPENDICES 99

A.6 A Proposal for an Adaptive Controller Strategy

Section 5.2.4 mentioned the inability of the controller to adapt for MiRo’s unbalanced

wheel speeds. Here is proposed a potential solution to the problem, where its imple-

mentation is left open for further consideration.

The aim for this adaptive controller is to have MiRo adapt its parameters according

to its behaviour outputs, thus overcoming many of the uncertainties that give rise to the

issue outlined above. In addition to the centroid, cest , the rate of change of the centroid,

ċest , is required in this controller.

The range of centroid values determined by Equation 5.15 are presented as 641

discreet states (from -320 to 320), which then act as the inputs to a single layered neural

network. An additional set of inputs are included for the centroids rate of change,

which should be another 641 states ranging from -320 to 320 (c/fps). The total number

of inputs to the neural network is therefore 1282.

An input that represents a centroid position shall be given as xc, and for a centroid

rate of change xcc shall represent it. Input xc
i is 1 if the current state is equal to that

input, or 0 otherwise, and similarly for xcc
j .

The left and right wheel speeds are then given as a ratio of one another,

sratio =
sl

sr
(A.11)

ranging from sratio =
0.25

1 to 1, in steps of 0.05 (0.25, 0.30, ... , 1) and then descending

down again but with the inverse values (1
0.95 , 1

0.90 , ... , 1
0.25) giving 31 discreet bins.

These act as the outputs to the neural network. Given that there will be two inputs active

at any given time, representing the centroid and centroid rate of change, the outputs are

computed as a simple linear sum as follows,

yk = wikxc
i +w jkxcc

j (A.12)

An output, yk, is 1 if it has the maximum output vs all other outputs, and 0 otherwise,

i.e.

yk =

1, if yk > yl for all l 6= k

0, otherwise
(A.13)

APPENDICES 100

Reinforcement learning is then performed using the Rescorla-Wagner update rule

(Rescorla and Wagner, 1972) which shares the same characteristics as the perceptron

rule used in section 4.2.3, i.e. that a weight change occurs according to,

wik→ wik +ηδxk (A.14)

where in this instance δ is the difference between the output and the reward,

δ = r− yi (A.15)

Now it is well understood in temporal difference learning that rewards can be pre-

dicted for some future time instance (see Q-learning and the SARSA algorithm (Sutton

and Barto, 1998)), but here the approach will be to offer a reward at every time instance,

and to offer two rewards – one as a function of the centroid position; the second as a

function of the centroid rate of change, (letting cest
x = c),

r (c) = 1− |c|
cmax

(A.16)

r (ċ) = 1− |ċ|
ċmax

(A.17)

where cmax = 320 and ċmax = 640 and as such 1
cmax

and 1
ċmax

act as normalising terms,

ensuring |r| ≤ 1 in each case. Then, the above will give decreased rewards for being

further away from c = 0 or for large values of ċ, and will give rewards of 1 when

c = ċ = 0, and therefore represents the ideal states.

In order to compute Equations A.14 and A.15, it is imperative that the correct reward

is used for the correct state. I.e., for a c state (xc), r is given by (A.16), whilst for a ċ

state (xcc), (A.17) is used.

A state-action pair is thus given greater rewards for actions that reduce the absolute

value of c and ċ. There is one noticeable problem with the controller, and is found in

Equation A.13. Choosing always the action with the largest output could prevent the

controller from finding optimal solutions. To prevent this, a policy such as softmax

could be implemented (see (Sutton and Barto, 1998, p.30-31)) to allow possibilities for

further exploration of actions, before eventually converging to greedy as in (A.13).

APPENDICES 101

A.7 Project Timing Plan

Figure A.7: The project’s Gantt chart. In blue are the original project timing plans, with the
green bars the actual progress. Although the project did not strictly adhere to the original timing
plan, this did not affect the overall completion of the project aim and objectives.

